Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(3)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032740

RESUMEN

This study investigates a mechanistic link of bacterial biofilm-mediated host-pathogen interaction leading to immunological complications associated with breast implant illness (BII). Over 10 million women worldwide have breast implants. In recent years, women have described a constellation of immunological symptoms believed to be related to their breast implants. We report that periprosthetic breast tissue of participants with symptoms associated with BII had increased abundance of biofilm and biofilm-derived oxylipin 10-HOME compared with participants with implants who are without symptoms (non-BII) and participants without implants. S. epidermidis biofilm was observed to be higher in the BII group compared with the non-BII group and the normal tissue group. Oxylipin 10-HOME was found to be immunogenically capable of polarizing naive CD4+ T cells with a resulting Th1 subtype in vitro and in vivo. Consistently, an abundance of CD4+Th1 subtype was observed in the periprosthetic breast tissue and blood of people in the BII group. Mice injected with 10-HOME also had increased Th1 subtype in their blood, akin to patients with BII, and demonstrated fatigue-like symptoms. The identification of an oxylipin-mediated mechanism of immune activation induced by local bacterial biofilm provides insight into the possible pathogenesis of the implant-associated immune symptoms of BII.


Asunto(s)
Implantes de Mama , Humanos , Femenino , Ratones , Animales , Implantes de Mama/efectos adversos , Implantes de Mama/microbiología , Oxilipinas , Biopelículas , Inmunidad
2.
Breast Cancer Res ; 25(1): 82, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430354

RESUMEN

BACKGROUND: Microbial dysbiosis has emerged as an important element in the development and progression of various cancers, including breast cancer. However, the microbial composition of the breast from healthy individuals, even relative to risk of developing breast cancer, remains unclear. Here, we performed a comprehensive analysis of the microbiota of the normal breast tissue, which was analyzed in relation to the microbial composition of the tumor and adjacent normal tissue. METHODS: The study cohorts included 403 cancer-free women (who donated normal breast tissue cores) and 76 breast cancer patients (who donated tumor and/or adjacent normal tissue samples). Microbiome profiling was obtained by sequencing the nine hypervariable regions of the 16S rRNA gene (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). Transcriptome analysis was also performed on 190 normal breast tissue samples. Breast cancer risk score was assessed using the Tyrer-Cuzick risk model. RESULTS: The V1V2 amplicon sequencing resulted more suitable for the analysis of the normal breast microbiome and identified Lactobacillaceae (Firmicutes phylum), Acetobacterraceae, and Xanthomonadaceae (both Proteobacteria phylum) as the most abundant families in the normal breast. However, Ralstonia (Proteobacteria phylum) was more abundant in both breast tumors and histologically normal tissues adjacent to malignant tumors. We also conducted a correlation analysis between the microbiome and known breast cancer risk factors. Abundances of the bacterial taxa Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp. were associated with age (p < 0.0001), racial background (p < 0.0001), and parity (p < 0.0001). Finally, transcriptome analysis of normal breast tissues showed an enrichment in metabolism- and immune-related genes in the tissues with abundant Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp., whereas the presence of Ralstonia in the normal tissue was linked to dysregulation of genes involved in the carbohydrate metabolic pathway. CONCLUSIONS: This study defines the microbial features of normal breast tissue, thus providing a basis to understand cancer-related dysbiosis. Moreover, the findings reveal that lifestyle factors can significantly affect the normal breast microbial composition.


Asunto(s)
Neoplasias de la Mama , Embarazo , Humanos , Femenino , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Disbiosis , ARN Ribosómico 16S/genética , Lactobacillus/genética
4.
mSystems ; 7(3): e0148921, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35642922

RESUMEN

Microbiota studies have reported changes in the microbial composition of the breast upon cancer development. However, results are inconsistent and limited to the later phases of cancer development (after diagnosis). We analyzed and compared the resident bacterial taxa of histologically normal breast tissue (healthy, H, n = 49) with those of tissues donated prior to (prediagnostic, PD, n = 15) and after (adjacent normal, AN, n = 49, and tumor, T, n = 46) breast cancer diagnosis (n total = 159). DNA was isolated from tissue samples and submitted for Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S gene. To infer bacterial function in breast cancer, we predicted the functional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional analysis revealed an intermediary taxonomic signature in the PD tissue relative to that of the H tissue, represented by shifts in Bacillaceae, Burkholderiaceae, Corynebacteriaceae, Streptococcaceae, and Staphylococcaceae. This compositional signature was enhanced in the AN and T tissues. We also identified significant metabolic reprogramming of the microbiota of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation analysis between host transcriptome profiling and microbial taxa and genes in H and PD tissues identified altered associations between the human host and mammary microbiota in PD tissue compared with H tissue. These findings suggest that compositional shifts in bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early events in breast cancer development that are potentially linked with cancer susceptibility. IMPORTANCE The goal of this study was to determine the role of resident breast tissue bacteria in breast cancer development. We analyzed breast tissue bacteria in healthy breast tissue and breast tissue donated prior to (precancerous) and after (postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancerous and postcancerous breast tissues demonstrated differences in the amounts of breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These differences in function are further emphasized by altered associations of the breast tissue bacteria with gene expression in the human host prior to cancer development. Collectively, these analyses identified shifts in bacterial abundance and metabolic function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a therapeutic target in breast cancer prevention.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Microbiota , Lesiones Precancerosas , Animales , Humanos , Femenino , Disbiosis/diagnóstico , Microbiota/genética , Mama , Bacterias/genética , Neoplasias de la Mama/diagnóstico
5.
J Natl Cancer Inst ; 114(10): 1420-1424, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333343

RESUMEN

Reduced age-related terminal duct lobular unit (TDLU) involution has been linked to increased breast cancer risk and triple-negative breast cancer. Associations of TDLU involution levels with race and ethnicity remain incompletely explored. Herein, we examined the association between genetic ancestry and TDLU involution in normal breast tissue donated by 2014 healthy women in the United States. Women of African ancestry were more likely than European women to have increased TDLU counts (odds ratio [OR]trend = 1.36, 95% confidence interval [CI] = 1.07 to 1.74), acini counts per TDLU (OR = 1.47, 95% CI = 1.06 to 2.03), and median TDLU span (ORtrend = 1.44, 95% CI = 1.08 to 1.91), indicating lower involution, whereas East Asian descendants were associated with decreased TDLU counts (ORtrend = 0.52, 95% CI = 0.35 to 0.78) after controlling for potential confounders. These associations are consistent with the racial variations in incidence rates of triple-negative breast cancer in the United States and suggest opportunities for future work examining whether TDLU involution may mediate the racial differences in subtype-specific breast cancer risk.


Asunto(s)
Neoplasias de la Mama , Glándulas Mamarias Humanas , Neoplasias de la Mama Triple Negativas , Mama , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Femenino , Humanos , Incidencia , Riesgo , Neoplasias de la Mama Triple Negativas/complicaciones , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Estados Unidos/epidemiología
6.
Biomark Res ; 10(1): 8, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183258

RESUMEN

BACKGROUND: Family with sequence similarity 83 member A (FAM83A) presents oncogenic properties in several cancers including breast cancer. Recently, we reported FAM83A overexpression in normal breast tissues from women at high risk of breast cancer. We now hypothesize that FAM83A is a key factor in breast cancer initiation. METHODS: Immunohistochemical staining was used to evaluate FAM83A protein levels in both a normal breast tissue microarray (TMA, N = 411) and a breast tumor TMA (N = 349). EGFR staining and its correlation with FAM83A expression were also assessed. Lentivirus-mediated manipulation of FAM83A expression in primary and hTERT-immortalized breast epithelial cells was employed. Biological and molecular alterations upon FAM83A overexpression/downregulation and FAM83A's interaction partners were investigated. RESULTS: TMA analysis revealed a 1.5-fold increase in FAM83A expression level in breast cancer cases as compared with normal breast tissues (p < 0.0001). FAM83A protein expression was directly correlated with EGFR level in both normal and breast cancer tissues. In in vitro assays, exogenous expression of FAM83A in either primary or immortalized breast epithelial cells promoted cell viability and proliferation. Additionally, Ingenuity Pathway Analysis (IPA) revealed that FAM83A overexpression in primary cells affected the expression of genes involved in cellular morphology and metabolism. Mass spectrometry analysis identified DDX3X and LAMB3 as potential FAM83A interaction partners in primary cells, while we detected FAM83A interaction with cytoskeleton reorganization factors, including LIMA1, MYH10, PLEC, MYL6 in the immortalized cells. CONCLUSIONS: This study shows that FAM83A promotes metabolic activation in primary breast epithelial cells and cell proliferation in both primary and immortalized cells. These findings support its role in early breast oncogenesis.

7.
Clin Epigenetics ; 14(1): 21, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139887

RESUMEN

BACKGROUND: Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS: Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Epigénesis Genética/genética , Medición de Riesgo/métodos , Activación Transcripcional/genética , Adulto , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Estudios de Cohortes , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Persona de Mediana Edad , Medición de Riesgo/estadística & datos numéricos , Activación Transcripcional/fisiología
8.
STAR Protoc ; 3(1): 101047, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34977686

RESUMEN

The Komen Tissue Bank is the only biorepository in the world for normal breast tissues from women. Below we report the acquisition and processing of breast tissue from volunteer donors and describe an experimental and analysis pipeline to generate a single-cell atlas. This atlas is based on single-cell RNA-seq and is useful to derive breast epithelial cell subcluster-specific gene expression signatures, which can be applied to breast cancer gene expression data to identify putative cell-of-origin. For complete details on the use and execution of this protocol, please refer to Bhat-Nakshatri et al. (2021).


Asunto(s)
Neoplasias de la Mama , Análisis de la Célula Individual , Bancos de Muestras Biológicas , Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Transcriptoma
9.
iScience ; 24(1): 101938, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33426510

RESUMEN

M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-ß enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations.

10.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33262312

RESUMEN

The ability of a mother to produce a nutritionally complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by mammary epithelial cells is adaptive, its release is exquisitely timed, and its own glandular stagnation with the permanent cessation of suckling triggers the cell death and tissue remodeling that enables female mammals to nurse successive progeny. Chemical and mechanical signals both play a role in this process. However, despite this duality of input, much remains unknown about the nature and function of mechanical forces in this organ. Here, we characterize the force landscape in the functionally mature gland and the capacity of luminal and basal cells to experience and exert force. We explore molecular instruments for force-sensing, in particular channel-mediated mechanotransduction, revealing increased expression of Piezo1 in mammary tissue in lactation and confirming functional expression in luminal cells. We also reveal, however, that lactation and involution proceed normally in mice with luminal-specific Piezo1 deletion. These findings support a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.


Asunto(s)
Glándulas Mamarias Animales , Mecanotransducción Celular , Animales , Biofisica , Femenino , Canales Iónicos/genética , Lactancia , Ratones
11.
NPJ Breast Cancer ; 6: 50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083529

RESUMEN

Histologically normal tissue adjacent to the tumor can provide insight of the microenvironmental alterations surrounding the cancerous lesion and affecting the progression of the disease. However, little is known about the molecular changes governing cancer initiation in cancer-free breast tissue. Here, we employed laser microdissection and whole-transcriptome profiling of the breast epithelium prior to and post tumor diagnosis to identify the earliest alterations in breast carcinogenesis. Furthermore, a comprehensive analysis of the three tissue compartments (microdissected epithelium, stroma, and adipose tissue) was performed on the breast donated by either healthy subjects or women prior to the clinical manifestation of cancer (labeled "susceptible normal tissue"). Although both susceptible and healthy breast tissues appeared histologically normal, the susceptible breast epithelium displayed a significant upregulation of genes involved in fatty acid uptake/transport (CD36 and AQP7), lipolysis (LIPE), and lipid peroxidation (AKR1C1). Upregulation of lipid metabolism- and fatty acid transport-related genes was observed also in the microdissected susceptible stromal and adipose tissue compartments, respectively, when compared with the matched healthy controls. Moreover, inter-compartmental co-expression analysis showed increased epithelium-adipose tissue crosstalk in the susceptible breasts as compared with healthy controls. Interestingly, reductions in natural killer (NK)-related gene signature and CD45+/CD20+ cell staining were also observed in the stromal compartment of susceptible breasts. Our study yields new insights into the cancer initiation process in the breast. The data suggest that in the early phase of cancer development, metabolic activation of the breast, together with increased epithelium-adipose tissue crosstalk may create a favorable environment for final cell transformation, proliferation, and survival.

12.
Proc Natl Acad Sci U S A ; 117(43): 26822-26832, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33033227

RESUMEN

The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.


Asunto(s)
Señalización del Calcio , Glándulas Mamarias Animales/fisiología , Eyección Láctea , Animales , Células Epiteliales/fisiología , Humanos , Microscopía Intravital , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos , Cadenas Ligeras de Miosina/metabolismo
13.
Horm Cancer ; 11(1): 17-33, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31858384

RESUMEN

Breast cancer is the second leading cause of cancer mortality among women. Mammography and tumor biopsy followed by histopathological analysis are the current methods to diagnose breast cancer. Mammography does not detect all breast tumor subtypes, especially those that arise in younger women or women with dense breast tissue, and are more aggressive. There is an urgent need to find circulating prognostic molecules and liquid biopsy methods for breast cancer diagnosis and reducing the mortality rate. In this study, we systematically evaluated metabolites and proteins in blood to develop a pipeline to identify potential circulating biomarkers for breast cancer risk. Our aim is to identify a group of molecules to be used in the design of portable and low-cost biomarker detection devices. We obtained plasma samples from women who are cancer free (healthy) and women who were cancer free at the time of blood collection but developed breast cancer later (susceptible). We extracted potential prognostic biomarkers for breast cancer risk from plasma metabolomics and proteomics data using statistical and discriminative power analyses. We pre-processed the data to ensure the quality of subsequent analyses, and used two main feature selection methods to determine the importance of each molecule. After further feature elimination based on pairwise dependencies, we measured the performance of logistic regression classifier on the remaining molecules and compared their biological relevance. We identified six signatures that predicted breast cancer risk with different specificity and selectivity. The best performing signature had 13 factors. We validated the difference in level of one of the biomarkers, SCF/KITLG, in plasma from healthy and susceptible individuals. These biomarkers will be used to develop low-cost liquid biopsy methods toward early identification of breast cancer risk and hence decreased mortality. Our findings provide the knowledge basis needed to proceed in this direction.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Femenino , Humanos , Medición de Riesgo
14.
Cancer Res ; 79(10): 2494-2510, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30862719

RESUMEN

Obesity is a risk factor for postmenopausal estrogen receptor alpha (ERα)-positive (ER+) breast cancer. Molecular mechanisms underlying factors from plasma that contribute to this risk and how these mechanisms affect ERα signaling have yet to be elucidated. To identify such mechanisms, we performed whole metabolite and protein profiling in plasma samples from women at high risk for breast cancer, which led us to focus on factors that were differentially present in plasma of obese versus nonobese postmenopausal women. These studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with increased proliferation and aggressiveness in ER+ breast cancer cells. FFAs activated both the ERα and mTOR pathways and rewired metabolism in breast cancer cells. Pathway preferential estrogen-1 (PaPE-1), which targets ERα and mTOR signaling, was able to block changes induced by FFA and was more effective in the presence of FFA. Collectively, these data suggest a role for obesity-associated gene and metabolic rewiring in providing new targetable vulnerabilities for ER+ breast cancer in postmenopausal women. Furthermore, they provide a basis for preclinical and clinical trials where the impact of agents that target ERα and mTOR signaling cross-talk would be tested to prevent ER+ breast cancers in obese postmenopausal women. SIGNIFICANCE: These findings show that obesity-associated changes in certain blood metabolites rewire metabolic programs in cancer cells, influence mammary epithelial cell tumorigenicity and aggressiveness, and increase breast cancer risk.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Obesidad/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/complicaciones , Antígenos CD36/sangre , Línea Celular Tumoral , Cromatina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Obesidad/sangre , Obesidad/complicaciones , Fosfatidilinositol 3-Quinasas/metabolismo , Posmenopausia
15.
Cancer Res ; 78(17): 5107-5123, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997232

RESUMEN

Cell-type origin is one of the factors that determine molecular features of tumors, but resources to validate this concept are scarce because of technical difficulties in propagating major cell types of adult organs. Previous attempts to generate such resources to study breast cancer have yielded predominantly basal-type cell lines. We have created a panel of immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that form ductal structures similar to normal breast in 3D cultures and expressed markers of major cell types, including the luminal-differentiated cell-enriched ERα-FOXA1-GATA3 transcription factor network. We have also created cell lines from PROCR (CD201)+/EpCAM- cells that are likely the "normal" counterpart of the claudin-low subtype of breast cancers. RNA-seq and PAM50-intrinsic subtype clustering identified these cell lines as the "normal" counterparts of luminal A, basal, and normal-like subtypes and validated via immunostaining with basal-enriched KRT14 and luminal-enriched KRT19. We further characterized these cell lines by flow cytometry for distribution patterns of stem/basal, luminal-progenitor, mature/differentiated, multipotent PROCR+ cells, and organogenesis-enriched epithelial/mesenchymal hybrid cells using CD44/CD24, CD49f/EpCAM, CD271/EpCAM, CD201/EpCAM, and ALDEFLUOR assays and E-cadherin/vimentin double staining. These cell lines showed interindividual heterogeneity in stemness/differentiation capabilities and baseline activity of signaling molecules such as NF-κB, AKT2, pERK, and BRD4. These resources can be used to test the emerging concept that genetic variations in regulatory regions contribute to widespread differences in gene expression in "normal" conditions among the general population and can delineate the impact of cell-type origin on tumor progression.Significance: In addition to providing a valuable resource for the breast cancer research community to investigate cell-type origin of different subtypes of breast cancer, this study highlights interindividual differences in normal breast, emphasizing the need to use "normal" cells from multiple sources as controls to decipher the effects of cancer-specific genomic aberrations. Cancer Res; 78(17); 5107-23. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Mama/metabolismo , Linaje de la Célula/genética , Células Epiteliales/metabolismo , Adulto , Mama/patología , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Diferenciación Celular , Receptor de Proteína C Endotelial/genética , Molécula de Adhesión Celular Epitelial/genética , Células Epiteliales/patología , Receptor alfa de Estrógeno/genética , Femenino , Factor de Transcripción GATA3/genética , Regulación Neoplásica de la Expresión Génica/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , FN-kappa B/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Factores de Transcripción/genética
16.
Oncotarget ; 9(3): 4214-4222, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423116

RESUMEN

Plasma cell-free DNA (cfDNA) is a small DNA fragment circulating in the bloodstream originating from both non-tumor- and tumor-derived cells. A previous study showed that a plasma telomeric cfDNA level decreases in sporadic breast cancer patients compared to controls. Tumor suppressor gene products including BRCA1 and BRCA2 (BRCA1&2) play an important role in telomere maintenance. In this study, we hypothesized that the plasma telomeric cfDNA level is associated with the mutation status of BRCA1&2 genes. To test this hypothesis, we performed plasma telomeric cfDNA quantitative PCR (qPCR)-based assays to compare 28 women carriers of the BRCA1&2 mutation with age-matched controls of 28 healthy women. The results showed that the plasma telomeric cfDNA level was lower in unaffected BRCA1&2 mutation carriers than in age-matched controls from non-obese women (BMI < 30), while there was no association between unaffected BRCA1&2 mutation carriers and age-matched controls in obese women (BMI > 30). Moreover, the plasma telomeric cfDNA level applied aptly to the Tyrer-Cuzick model in non-obese women. These findings suggest that circulating cfDNA may detect dysfunctional telomeres derived from cells with BRCA1&2 mutations and, therefore, its level is associated with breast cancer susceptibility. This pilot study warrants further investigation to elucidate the implication of plasma telomeric cfDNA levels in relation to cancer and obesity.

17.
Mol Cancer ; 14: 206, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26643252

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling is often portrayed as a simple pathway that is initiated by Wnt ligand at the cell surface leading, via linear series of interactions between 'core pathway' members, to the induction of nuclear transcription from genes flanked by ß-catenin/TCF transcription factor binding sites. Wnt/ß-catenin signaling is also regulated by a much larger set of 'non-core regulators'. However the relationship between 'non-core regulators' is currently not well understood. Aberrant activation of the pathway has been shown to drive tumorgenesis in a number of different tissues. METHODS: Mammalian cells engineered to have a partially-active level of Wnt/ß-catenin signaling were screened by transfection for proteins that up or down-regulated a mid-level of TCF-dependent transcription induced by transient expression of an activated LRP6 Wnt co-receptor (∆NLRP). RESULTS: 141 novel regulators of TCF-dependent transcription were identified. Surprisingly, when tested without ∆NLRP activation, most up-regulators failed to alter TCF-dependent transcription. However, when expressed in pairs, 27 % (466/1170) functionally interacted to alter levels of TCF-dependent transcription. When proteins were displayed as nodes connected by their ability to co-operate in the regulation of TCF-dependent transcription, a network of functional interactions was revealed. In this network, 'core pathway' components (Eg. ß-catenin, GSK-3, Dsh) were found to be the most highly connected nodes. Activation of different nodes in this network impacted on the sensitivity to Wnt pathway small molecule antagonists. CONCLUSIONS: The 'functional connectome' identified here strongly supports an alternative model of the Wnt pathway as a complex context-dependent network. The network further suggests that mutational activation of highly connected Wnt signaling nodes predisposed cells to further context-dependent alterations in levels of TCF-dependent transcription that may be important during tumor progression and treatment.


Asunto(s)
Antineoplásicos/farmacología , Factores de Transcripción TCF/fisiología , Proteínas Wnt/fisiología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Mapas de Interacción de Proteínas , Transcripción Genética , Xenopus laevis
18.
Clin Exp Metastasis ; 31(7): 771-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25086928

RESUMEN

Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.


Asunto(s)
Neoplasias de la Mama/patología , Perfilación de la Expresión Génica , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Regulación hacia Abajo , Femenino , Humanos , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Cancer Res ; 73(19): 5949-62, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23940300

RESUMEN

Nm23-H1 has been identified as a metastasis suppressor gene, but its protein interactions have yet to be understood with any mechanistic clarity. In this study, we evaluated the proteomic spectrum of interactions made by Nm23-H1 in 4T1 murine breast cancer cells derived from tissue culture, primary mammary tumors, and pulmonary metastases. By this approach, we identified the actin-severing protein Gelsolin as binding partner for Nm23-H1, verifying their interaction by coimmunoprecipitation in 4T1 cells as well as in human MCF7, MDA-MB-231T, and MDA-MB-435 breast cancer cells. In Gelsolin-transfected cells, coexpression of Nm23-H1 abrogated the actin-severing activity of Gelsolin. Conversely, actin severing by Gelsolin was abrogated by RNA interference-mediated silencing of endogenous Nm23-H1. Tumor cell motility was negatively affected in parallel with Gelsolin activity, suggesting that Nm23-H1 binding inactivated the actin-depolymerizing function of Gelsolin to inhibit cell motility. Using indirect immunoflourescence to monitor complexes formed by Gelsolin and Nm23-H1 in living cells, we observed their colocalization in a perinuclear cytoplasmic compartment that was associated with the presence of disrupted actin stress fibers. In vivo analyses revealed that Gelsolin overexpression increased the metastasis of orthotopically implanted 4T1 or tail vein-injected MDA-MB-231T cells (P = 0.001 and 0.04, respectively), along with the proportion of mice with diffuse liver metastases, an effect ablated by coexpression of Nm23-H1. We observed no variation in proliferation among lung metastases. Our findings suggest a new actin-based mechanism that can suppress tumor metastasis.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Gelsolina/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/patología , Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Apoptosis , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Femenino , Técnica del Anticuerpo Fluorescente , Gelsolina/antagonistas & inhibidores , Gelsolina/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Nucleósido Difosfato Quinasas NM23/genética , ARN Interferente Pequeño/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Am J Pathol ; 183(4): 1084-1095, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23895915

RESUMEN

Despite important progress in adjuvant and neoadjuvant therapies, metastatic disease often develops in breast cancer patients and remains the leading cause of their deaths. For patients with established metastatic disease, therapy is palliative, with few breaks and with mounting adverse effects. Many have hypothesized that a personalized or precision approach (the terms are used interchangeably) to cancer therapy, in which treatment is based on the individual characteristics of each patient, will provide better outcomes. Here, we discuss the molecular basis of breast cancer metastasis and the challenges in personalization of treatment. The instability of metastatic tumors remains a leading obstacle to personalization, because information from a patient's primary tumor may not accurately reflect the metastasis, and one metastasis may vary from another. Furthermore, the variable presence of tumor subpopulations, such as stem cells and dormant cells, may increase the complexity of the targeted treatments needed. Although molecular signatures and circulating biomarkers have been identified in breast cancer, there is lack of validated predictive molecular markers to optimize treatment choices for either prevention or treatment of metastatic disease. Finally, to maximize the information that can be obtained, increased attention to clinical trial design in the metastasis preventive setting is needed.


Asunto(s)
Neoplasias de la Mama/patología , Metástasis de la Neoplasia/prevención & control , Metástasis de la Neoplasia/terapia , Medicina de Precisión , Ensayos Clínicos como Asunto , Femenino , Humanos , Terapia Molecular Dirigida , Células Neoplásicas Circulantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA