Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 800395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402296

RESUMEN

During the acute phase of Chagas disease, Trypanosoma cruzi circulation through the bloodstream leads to high tissue parasitism in the host. In primary lymphoid organs, progenitor cell reduction paralleled transient immunosuppression. Herein we showed that acute oral infection in mice promotes diffuse parasitism in bone marrow cells at 14 and 21 days post-infection (dpi), with perivascular regions, intravascular regions, and regions near the bone being target sites of parasite replication. Phenotypic analysis of hematopoietic differentiation in the bone marrow of infected mice showed that the cell number in the tissue is decreased (lineage-negative and lineage-positive cells). Interestingly, analysis of hematopoietic branching points showed that hematopoietic stem and progenitor cells (HSPCs) were significantly increased at 14 dpi. In addition, the pool of progenitors with stem plasticity (HSC-MPP3), as well as multipotent progenitors (MPPs) such as MPP4, also showed this pattern of increase. In contrast, subsequent progenitors that arise from MPPs, such as common lymphoid progenitors (CLPs), lymphoid-primed MPPs (LMPPs), and myeloid progenitors, were not enhanced; conversely, all presented numeric decline. Annexin V staining revealed that cell death increase in the initial hematopoietic branching point probably is not linked to CLPs and that myeloid progenitors decreased at 14 and 21 dpi. In parallel, our investigation provided clues that myeloid progenitor decrease could be associated with an atypical expression of Sca-1 in this population leading to a remarkable increase on LSK-like cells at 14 dpi within the HSPC compartment. Finally, these results led us to investigate HSPC presence in the spleen as a phenomenon triggered during emergency hematopoiesis due to mobilization or expansion of these cells in extramedullary sites. Splenocyte analysis showed a progressive increase in HSPCs between 14 and 21 dpi. Altogether, our study shows that the bone marrow is a target tissue in T. cruzi orally infected mice, leading to a hematopoietic disturbance with LSK-like cell bias accounting on HSPCs possibly affecting myeloid progenitor numbers. The LMPP and CLP reduction converges with defective thymocyte development. Lastly, it is tempting to speculate that the extramedullary hematopoiesis seen in the spleen is a mechanism involved in the hematological maintenance reported during the acute phase of oral T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Hematopoyesis Extramedular , Trypanosoma cruzi , Animales , Diferenciación Celular , Linaje de la Célula , Hematopoyesis/fisiología , Ratones , Ratones Endogámicos C57BL
2.
PLoS Negl Trop Dis ; 14(12): e0008969, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347472

RESUMEN

CD8 T cells are regarded as pivotal players in both immunoprotection and immunopathology following Trypanosoma cruzi infection. Previously, we demonstrated the expansion of CD8+ T lymphocytes in the spleen of T. cruzi-infected mice under treatment with benznidazole (N-benzyl-2-nitroimidazole acetamide; Bz), a drug available for clinical therapy. This finding underlies the concept that the beneficial effects of Bz on controlling acute T. cruzi infection are related to a synergistic process between intrinsic trypanocidal effect and indirect triggering of the active immune response. In the present study, we particularly investigated the effect of Bz treatment on the CD8+ T cell subset following T. cruzi infection. Herein we demonstrated that, during acute T. cruzi infection, Bz treatment reduces and abbreviates the parasitemia, but maintains elevated expansion of CD8+ T cells. Within this subset, a remarkable group of CD8low cells was found in both Bz-treated and non-treated infected mice. In Bz-treated mice, early pathogen control paralleled the lower frequency of recently activated CD8low cells, as ascertained by CD69 expression. However, the CD8low subset sustains significant levels of CD44highCD62Llow and CD62LlowT-bethigh effector memory T cells, in both Bz-treated and non-treated infected mice. These CD8low cells also comprise the main group of spontaneous interferon (IFN)-γ-producing CD8+ T cells. Interestingly, following in vitro anti-CD3/CD28 stimulation, CD8+ T cells from Bz-treated T. cruzi-infected mice exhibited higher frequency of IFN-γ+ cells, which bear mostly a CD8low phenotype. Altogether, our results point to the marked presence of CD8low T cells that arise during acute T. cruzi infection, with Bz treatment promoting their significant expansion along with a potential effector program for high IFN-γ production.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Enfermedad Aguda , Animales , Linfocitos T CD8-positivos/inmunología , Enfermedad de Chagas/parasitología , Femenino , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Trypanosoma cruzi/genética
3.
Parasite Immunol ; 41(9): e12662, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31271660

RESUMEN

Plasmodium falciparum-specific antibodies tend to be short-lived, but their cognate memory B cells (MBCs) circulate in the peripheral blood of exposed subjects for several months or years after the last infection. However, the time course of antigen-specific antibodies and B-cell responses to the relatively neglected parasite Plasmodium vivax remains largely unexplored. Here, we showed that uncomplicated vivax malaria elicits short-lived antibodies but long-lived MBC responses to a major blood-stage P vivax antigen, apical membrane protein 1 (PvAMA-1), in subjects exposed to declining malaria transmission in the Amazon Basin of Brazil. We found that atypical (CD19+ CD10- CD21- CD27- ) MBCs, which appear to share a common precursor with classical MBCs but are unable to differentiate into antibody-secreting cells, significantly outnumbered classical MBCs by 5:1 in the peripheral blood of adult subjects currently or recently infected with P vivax and by 3:1 in healthy residents in the same endemic communities. We concluded that malaria can drive classical MBCs to differentiate into functionally impaired MBCs not only in subjects repeatedly exposed to P falciparum, but also in subjects living in areas with low levels of P vivax transmission in the Amazon, leading to an impaired B-cell memory that may affect both naturally acquired and vaccine-induced immunity.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Linfocitos B/inmunología , Memoria Inmunológica , Malaria Vivax/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium vivax/fisiología , Proteínas Protozoarias/metabolismo , Adulto , Antígenos de Protozoos/inmunología , Brasil , Femenino , Humanos , Estudios Longitudinales , Malaria Falciparum/inmunología , Masculino , Plasmodium falciparum/inmunología
4.
Front Immunol ; 10: 1073, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139194

RESUMEN

Oral transmission of Trypanosoma cruzi, the etiologic agent of Chagas disease, is presently the most important route of infection in Brazilian Amazon. Other South American countries have also reported outbreaks of acute Chagas disease associated with food consumption. A conspicuous feature of this route of transmission is presenting symptoms such as facial and lower limbs edema, in some cases bleeding manifestations and risk of thromboembolism are evident. Notwithstanding, studies that address this route of infection are largely lacking regarding its pathogenesis and, more specifically, the crosstalk between immune and hemostatic systems. Here, BALB/c mice were orally infected with metacyclic trypomastigotes of T. cruzi Tulahuén strain and used to evaluate the cytokine response, primary and secondary hemostasis during acute T. cruzi infection. When compared with control uninfected animals, orally infected mice presented higher pro-inflammatory cytokine (TNF-α, IFN-γ, and IL-6) serum levels. The highest concentrations were obtained concomitantly to the increase of parasitemia, between 14 and 28 days post-infection (dpi). Blood counts in the oral infected group revealed concomitant leukocytosis and thrombocytopenia, the latter resulting in increased bleeding at 21 dpi. Hematological changes paralleled with prolonged activated partial thromboplastin time, Factor VIII consumption and increased D-dimer levels, suggest that oral T. cruzi infection relies on disseminated intravascular coagulation. Remarkably, blockade of the IL-6 receptor blunted hematological abnormalities, revealing a critical role of IL-6 in the course of oral infection. These results unravel that acute T. cruzi oral infection results in significant alterations in the hemostatic system and indicates the relevance of the crosstalk between inflammation and hemostasis in this parasitic disease.


Asunto(s)
Enfermedad de Chagas/inmunología , Hemostasis , Interleucina-6/fisiología , Enfermedad Aguda , Animales , Enfermedad de Chagas/sangre , Enfermedad de Chagas/complicaciones , Citocinas/biosíntesis , Coagulación Intravascular Diseminada/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Parasitemia/inmunología , Transducción de Señal , Trombocitopenia/etiología
5.
PLoS One ; 9(7): e102014, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25061945

RESUMEN

In dengue virus (DENV) infection, complement system (CS) activation appears to have protective and pathogenic effects. In severe dengue fever (DF), the levels of DENV non-structural-1 protein and of the products of complement activation, including C3a, C5a and SC5b-9, are higher before vascular leakage occurs, supporting the hypothesis that complement activation contributes to unfavourable outcomes. The clinical manifestations of DF range from asymptomatic to severe and even fatal. Here, we aimed to characterise CS by their receptors or activation product, in vivo in DF patients and in vitro by DENV-2 stimulation on monocytes. In comparison with healthy controls, DF patients showed lower expression of CR3 (CD11b), CR4 (CD11c) and, CD59 on monocytes. The DF patients who were high producers of SC5b-9 were also those that showed more pronounced bleeding or vascular leakage. Those findings encouraged us to investigate the role of CS in vitro, using monocytes isolated from healthy subjects. Prior blocking with CR3 alone (CD11b) or CR3 (CD11b/CD18) reduced viral infection, as quantified by the levels of intracellular viral antigen expression and soluble DENV non-structural viral protein. However, we found that CR3 alone (CD11b) or CR3 (CD11b/CD18) blocking did not influence major histocompatibility complex presentation neither active caspase-1 on monocytes, thus probably ruling out inflammasome-related mechanisms. Although it did impair the secretion of tumour necrosis factor alpha and interferon alpha. Our data provide strategies of blocking CR3 (CD11b) pathways could have implications for the treatment of viral infection by antiviral-related mechanisms.


Asunto(s)
Virus del Dengue/inmunología , Integrina alfaXbeta2/inmunología , Antígeno de Macrófago-1/inmunología , Dengue Grave/inmunología , Adulto , Caspasa 1/inmunología , Activación de Complemento/inmunología , Complemento C3a/biosíntesis , Complemento C3a/inmunología , Complemento C5a/biosíntesis , Complemento C5a/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/biosíntesis , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Virus del Dengue/patogenicidad , Femenino , Regulación Viral de la Expresión Génica , Humanos , Integrina alfaXbeta2/genética , Antígeno de Macrófago-1/genética , Masculino , Persona de Mediana Edad , Monocitos , Dengue Grave/genética , Dengue Grave/patología , Dengue Grave/virología , Proteínas no Estructurales Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...