Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1171908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152647

RESUMEN

This study demonstrated the antibacterial and antiviral potential of condensed tannins and tannic acid when incorporated into fiber networks tested for functional material purposes. Condensed tannins were extracted from industrial bark of Norway spruce by using pressurized hot water extraction (PHWE), followed by purification of extracts by using XADHP7 treatment to obtain sugar-free extract. The chemical composition of the extracts was analyzed by using HPLC, GC‒MS and UHPLC after thiolytic degradation. The test matrices, i.e., lignocellulosic handsheets, were produced and impregnated with tannin-rich extracts, and tannic acid was used as a commercial reference. The antibacterial and antiviral efficacy of the handsheets were analyzed by using bioluminescent bacterial strains (Staphylococcus aureus RN4220+pAT19 and Escherichia coli K12+pCGLS11) and Enterovirus coxsackievirus B3. Potential bonding of the tannin-rich extract and tannic acid within the fiber matrices was studied by using FTIR-ATR spectroscopy. The deposition characteristics (distribution and accumulation patterns) of tannin compounds and extracts within fiber networks were measured and visualized by direct chemical mapping using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and digital microscopy. Our results demonstrated for the first time, how tannin-rich extracts obtained from spruce bark side streams with green chemistry possess antiviral and antibacterial properties when immobilized into fiber matrices to create substitutes for plastic hygienic products, personal protection materials such as surgical face masks, or food packaging materials to prolong the shelf life of foodstuffs and prevent the spread of infections. However, more research is needed to further develop this proof-of-concept to ensure stable chemical bonding in product prototypes with specific chemistry.

2.
Viruses ; 9(10)2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946654

RESUMEN

Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.


Asunto(s)
Antivirales/farmacología , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Isoquinolinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Virus/efectos de los fármacos , Compuestos de Anilina/farmacología , Antivirales/química , Antivirales/uso terapéutico , Benzotiazoles/química , Benzotiazoles/uso terapéutico , Línea Celular , ADN Viral/genética , Humanos , Isoquinolinas/química , Isoquinolinas/uso terapéutico , Metabolómica , ARN Viral/genética , Sulfonamidas/farmacología , Transfección , Virosis/tratamiento farmacológico , Virosis/prevención & control
3.
J Invest Dermatol ; 127(1): 49-59, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16917496

RESUMEN

Collagenase-3 (MMP-13) is a matrix metalloproteinase capable of cleaving a multitude of extracellular matrix proteins in addition to fibrillar collagens. Human MMP-13 is expressed by fibroblasts in chronic cutaneous ulcers, but not in normally healing adult skin wounds. However, MMP-13 is produced by fibroblasts in adult gingival and in fetal skin wounds characterized by rapid collagen remodeling and scarless healing. Here, we have examined the role of human MMP-13 in remodeling of three-dimensional (3D) collagenous matrix by primary adult human skin fibroblasts. The high level of human MMP-13 expression by fibroblasts achieved by adenoviral gene delivery resulted in potent enhancement of remodeling and contraction of 3D collagen. Fibroblasts expressing MMP-13 in 3D collagen possessed altered filamentous actin morphology with patch-like actin distribution in cell extensions. The expression of MMP-13 promotes survival and proliferation of fibroblasts in floating collagen gel, and results in activation of Akt and extracellular signal-regulated kinase-1/2 by these cells. The results provide evidence for a novel role for human MMP-13 in regulating dermal fibroblast survival, proliferation, and interaction in 3D collagen, which may be an important survival mechanism for fibroblasts in chronic skin ulcers and contribute to scarless healing of adult gingival and fetal skin wounds.


Asunto(s)
Colágeno/fisiología , Fibroblastos/fisiología , Metaloproteinasa 13 de la Matriz/fisiología , Cicatrización de Heridas/fisiología , Actinas/metabolismo , Adenoviridae/genética , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Activación Enzimática , Humanos , Inhibidores de la Metaloproteinasa de la Matriz , Inhibidor Tisular de Metaloproteinasa-1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...