Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Chem ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039866

RESUMEN

BACKGROUND: Detection of minor DNA allele alterations is becoming increasingly important for early detection and monitoring of cancer. We describe a new method that uses ultraviolet light to eliminate wild-type DNA alleles and enables improved detection of minor genetic or epigenetic changes. METHODS: Pyrimidine-dependent UV-based minor-allele enrichment (PD-UVME) employed oligonucleotide probes that incorporated a UVA-sensitive 3-cyanovinylcarbazole (CNVK), placed directly opposite interrogated pyrimidines, such as thymine (T) or cytosine (C) in wild-type (WT) DNA. Upon UVA-illumination, CNVK cross-linked with T/C, preventing subsequent amplification. Mutations that removed the T/C escaped cross-linking and were amplified and detected. Similarly, CNVK discriminated between methylated and unmethylated cytosine in CpG dinucleotides, enabling direct enrichment of unmethylated DNA targets. PD-UVME was combined with digital droplet PCR (ddPCR) to detect serine/threonine-protein kinase B-Raf (BRAF) V600E mutations in model systems, thyroid patient cancer tissue samples, and circulating DNA of tumor origin (ctDNA) from melanoma patients. RESULTS: One thyroid cancer sample out of 9, and 6 circulating-DNA samples out of 7 were found to be BRAF V600E-positive via PD-UVME while classified as negative by conventional ddPCR. Positive samples via conventional ddPCR were also found positive via PD-UVME. All 10 circulating cell-free DNA (cfDNA) samples obtained from normal volunteers were negative via both approaches. Furthermore, preferential enrichment of unmethylated alleles in MAGEA1 promoters using PD-UVME was demonstrated. CONCLUSIONS: PD-UVME mutation/methylation enrichment performed prior to ddPCR magnifies low-level mutations or epigenetic changes and increases sensitivity and confidence in the results. It can assist with clinical decisions that hinge on the presence of trace alterations like BRAF V600E.

2.
Hum Genomics ; 18(1): 48, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769549

RESUMEN

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Asunto(s)
Virus de la Influenza A , Virus de la Influenza B , Reacción en Cadena de la Polimerasa Multiplex , Aguas Residuales , Aguas Residuales/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Humanos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sensibilidad y Especificidad , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/aislamiento & purificación , Reproducibilidad de los Resultados , Gripe Humana/diagnóstico , Gripe Humana/virología , Gripe Humana/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
3.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675639

RESUMEN

Milk is the most consumed liquid food in the world due to its high nutritional value and relatively low cost, characteristics that make it vulnerable to adulteration. One of the most common types of milk adulteration involves the undeclared addition of cow's milk to milk from other mammalian species, such as goats, sheep, buffalo or donkeys. The incidence of such adulteration not only causes a crisis in terms of commercial market and consumer uncertainty but also poses a risk to public health, as allergies can be triggered by proteins in undeclared cow's milk. In this study, a specific qualitative touchdown (TD) PCR method was developed to detect the undeclared addition of cow's milk in goat and sheep milk based on the discrimination of the peak areas of the melting curves after the modification of bovine-specific primers. The developed methodology has high specificity for the DNA templates of other species, such as buffalos and donkeys, and is able to identify the presence of cow's milk down to 1%. Repeatability was tested at low bovine concentrations of 5% and 1% and resulted in %RSD values of 1.53-2.04 for the goat-cow assay and 2.49-7.16 for the sheep-cow assay, respectively. The application of this method to commercial goat milk samples indicated a high percentage of noncompliance in terms of labeling (50%), while a comparison of the results to rapid immunochromatographic and ELISA kits validated the excellent sensitivity and applicability of the proposed PCR methodology that was able to trace more adulterated samples. The developed assays offer the advantage of multiple detection in a single run, resulting in a cost- and time-efficient method. Future studies will focus on the applicability of these assays in dairy products such as cheese and yogurt.


Asunto(s)
Contaminación de Alimentos , Cabras , Leche , Reacción en Cadena de la Polimerasa , Animales , Leche/química , Ovinos , Bovinos , Reacción en Cadena de la Polimerasa/métodos , Contaminación de Alimentos/análisis , Búfalos
4.
Sci Total Environ ; 914: 169747, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159750

RESUMEN

Ever since the outbreak of COVID-19 disease in Wuhan, China, different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified. Wastewater-based epidemiology (WBE), an approach that has been successfully applied in numerous case studies worldwide, offers a cost-effective and rapid way for monitoring trends of SARS-Cov-2 in the community level without selection bias. Despite being a gold-standard procedure, WBE is a challenging approach due to the sample instability and the moderate efficiency of SARS-CoV-2 concentration in wastewater. In the present study, we introduce Spike-Seq, a custom amplicon-based approach for the S gene sequencing of SARS-CoV-2 in wastewater samples, which enables not only the accurate identification of the existing Spike-related genetic markers, but also the estimation of their frequency in the investigated samples. The implementation of Spike-Seq involves the combination of nested PCR-based assays that efficiently amplify the entire nucleotide sequence of the S gene and next-generation sequencing, which enables the variant detection and the estimation of their frequency. In the framework of the current work, Spike-Seq was performed to investigate the mutational profile of SARS-CoV-2 in samples from the Wastewater Treatment Plant (WWTP) of Athens, Greece, which originated from multiple timepoints, ranging from March 2021 until July 2022. Our findings demonstrate that Spike-Seq efficiently detected major genetic markers of B.1.1.7 (Alpha), B.1.617.2 (Delta) as well as B.1.1.529 (Omicron) variants in wastewater samples and provided their frequency levels, showing similar variant distributions with the published clinical data from the National Public Health organization. The presented approach can prove to be a useful tool for the detection of SARS-CoV-2 in challenging wastewater samples and the identification of the existing genetic variants of S gene.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Secuencia de Bases , Marcadores Genéticos , Aguas Residuales , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...