Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Breast Cancer Res ; 24(1): 28, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422057

RESUMEN

BACKGROUND: Hormones impact breast tissue proliferation. Studies investigating the associations of circulating hormone levels with mammographic breast density have reported conflicting results. Due to the limited number of studies, we investigated the associations of hormone gene expression as well as their downstream mediators within the plasma with mammographic breast density in postmenopausal women. METHODS: We recruited postmenopausal women at their annual screening mammogram at Washington University School of Medicine, St. Louis. We used the NanoString nCounter platform to quantify gene expression of hormones (prolactin, progesterone receptor (PGR), estrogen receptor 1 (ESR1), signal transducer and activator of transcription (STAT1 and STAT5), and receptor activator of nuclear factor-kB (RANK) pathway markers (RANK, RANKL, osteoprotegerin, TNFRSF18, and TNFRSF13B) in plasma. We used Volpara to measure volumetric percent density, dense volume, and non-dense volume. Linear regression models, adjusted for confounders, were used to evaluate associations between gene expression (linear fold change) and mammographic breast density. RESULTS: One unit increase in ESR1, RANK, and TNFRSF18 gene expression was associated with 8% (95% CI 0-15%, p value = 0.05), 10% (95% CI 0-20%, p value = 0.04) and % (95% CI 0-9%, p value = 0.04) higher volumetric percent density, respectively. There were no associations between gene expression of other markers and volumetric percent density. One unit increase in osteoprotegerin and PGR gene expression was associated with 12% (95% CI 4-19%, p value = 0.003) and 7% (95% CI 0-13%, p value = 0.04) lower non-dense volume, respectively. CONCLUSION: These findings provide new insight on the associations of plasma hormonal and RANK pathway gene expression with mammographic breast density in postmenopausal women and require confirmation in other studies.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama , Densidad de la Mama/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Femenino , Expresión Génica , Hormonas , Humanos , Mamografía/métodos , Osteoprotegerina/genética , Posmenopausia/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Factores de Riesgo
3.
Genome Res ; 27(5): 849-864, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28396521

RESUMEN

The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig/normas , Genómica/normas , Haploidia , Haplotipos , Humanos , Polimorfismo Genético , Estándares de Referencia , Análisis de Secuencia de ADN/normas
4.
G3 (Bethesda) ; 7(1): 109-117, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27852011

RESUMEN

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Asunto(s)
Pollos/genética , Genoma/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Cromosomas Artificiales Bacterianos , Biología Computacional , Mapeo Contig
5.
Nature ; 469(7331): 529-33, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21270892

RESUMEN

'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Asunto(s)
Variación Genética , Genoma/genética , Pongo abelii/genética , Pongo pygmaeus/genética , Animales , Centrómero/genética , Cerebrósidos/metabolismo , Cromosomas , Evolución Molecular , Femenino , Reordenamiento Génico/genética , Especiación Genética , Genética de Población , Humanos , Masculino , Filogenia , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...