Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 652(Pt A): 749-757, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582670

RESUMEN

HYPOTHESIS: The surface-active ionic liquid, 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), has a sponge-like bulk nanostructure consisting of percolating polar and apolar domains formed by the ion charge groups and alkyl chains, respectively. We hypothesise that added water will swell the polar domains and change the liquid nanostructure. EXPERIMENTS: Small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and polarizing optical microscopy (POM) were used to investigate the nanostructure of [BMIm][AOT] as a function of water content. Differential scanning calorimetry (DSC) was employed to probe the thermal transitions of [BMIm][AOT]-water mixtures and the mobility of water molecules. FINDINGS: SAXS, SANS and POM show that at lower water contents, [BMIm][AOT]-water mixtures have a sponge-like nanostructure similar to the pure SAIL, at medium water contents a lamellar phase forms, and at high water contents vesicles form. DSC results reveal that water molecules are supercooled in the lamellar phase. For the first time, results reveal a series of transitions from inverse sponge, to lamellar then to vesicles, for [BMIm][AOT] upon dilution with water.

2.
J Phys Chem B ; 127(7): 1490-1498, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36786772

RESUMEN

Ionic liquids (ILs) have recently emerged as novel classes of solvents that support surfactant self-assembly into micelles, liquid crystals, and microemulsions. Their low volatility and wide liquid stability ranges make them attractive for many diverse applications, especially in extreme environments. However, the number of possible ion combinations makes systematic investigations both challenging and rare; this is further amplified when mixtures are considered, whether with water or other H-bonding components such as those found in deep eutectics. In this Perspective we examine what factors determine amphiphilicity, solvophobicity and solvophilicity, in ILs and related exotic environments, in what ways these differ from water, and how the underlying nanostructure of the liquid itself affects the formation and structure of micelles and other self-assembled materials.

3.
J Colloid Interface Sci ; 630(Pt A): 931-939, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36308988

RESUMEN

HYPOTHESIS: The ion structure of surface active ionic liquids (SAILs), i.e. ion charge group and alkyl chain structure, controls their bulk and interfacial nanostructure and the electrochemical properties near an electrode. EXPERIMENTS: The structures in the bulk and at the interface were investigated by small and wide-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), respectively. An investigation was performed using cyclic voltammetry. FINDINGS: All SAILs show pronounced sponge-like bulk nanostructure. For the first time, the bulk nanostructures of SAILs are found to change from anion bilayer structures to cation-anion interdigitated structures as the ion structures change from short alkyl chain cations and linear alkyl chain anions to long alkyl chain cations and branched alkyl chain anions. The bulk nanostructure packs more compactly at a higher temperature, likely due to the conformational change and enhanced interdigitations of alkyl chains. The thicknesses of SAIL interfacial layers align with the repeat distances of the bulk nanostructure, similar to conventional ILs with long cation alkyl chains. All SAILs have wide electrochemical windows >4 V, which are not affected by the alkyl chain structure and cation charge groups.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Líquidos Iónicos/química , Dispersión del Ángulo Pequeño , Electroquímica , Difracción de Rayos X , Nanoestructuras/química , Aniones/química , Cationes
4.
J Am Chem Soc ; 144(31): 14112-14120, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901278

RESUMEN

Non-viral delivery is an important strategy for selective and efficient gene therapy, immunization, and RNA interference, which overcomes problems of genotoxicity and inherent immunogenicity associated with viral vectors. Liposomes and polymers are compelling candidates as carriers for intracellular, non-viral delivery, but maximal efficiencies of around 1% have been reported for the most advanced non-viral carriers. Here, we develop a library of dendronized bottlebrush polymers with controlled defects, displaying a level of precision surpassed only by biological molecules like DNA, RNA, and proteins. We test concurrent and competitive delivery of DNA and show for the first time that, while intracellular communication is thought to be an exclusively biomolecular phenomenon, such communication between synthetic macromolecular complexes can also take place. Our findings challenge the assumption that delivery agents behave as bystanders that enable transfection by passive intracellular release of genetic cargo and improve upon coarse strategies in intracellular carrier design lacking control over polymer sequence, architecture, and composition, leading to a hit-or-miss outcome. Understanding the communication that takes place between macromolecules will help improve the design of non-viral delivery agents and facilitate translation of genome engineering, vaccines, and nucleic acid-based therapies.


Asunto(s)
Liposomas , Polímeros , Comunicación Celular , ADN/metabolismo , Técnicas de Transferencia de Gen , Liposomas/metabolismo , Transfección
5.
J Colloid Interface Sci ; 608(Pt 2): 2120-2130, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34752982

RESUMEN

HYPOTHESIS: A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS: The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS: [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Electroquímica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
J Colloid Interface Sci ; 594: 669-680, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33780770

RESUMEN

HYPOTHESIS: Morphology of surfactant self-assemblies are governed by the intermolecular interactions and packing constraints of the constituent molecules. Therefore, rational design of surfactant structure should allow targeting of the specific self-assembly modes, such as wormlike micelles (WLMs). By inclusion of an appropriate photo-responsive functionality to a surfactant molecule, light-based control of formulation properties without the need for additives can be achieved. EXPERIMENTS: A novel azobenzene-containing surfactant was synthesised with the intention of producing photo-responsive wormlike micelles. Aggregation of the molecule in its cis and trans isomers, and its concomitant flow properties, were characterised using UV-vis spectroscopy, small-angle neutron scattering, and rheological measurements. Finally, the fluids capacity for mediating particle diffusion was assessed using dynamic light scattering. FINDINGS: The trans isomer of the novel azo-surfactant was found to form a viscoelastic WLM network, which transitioned to inviscid ellipsoidal aggregates upon photo-switching to the cis isomer. This was accompanied by changes in zero-shear viscosity up to 16,000×. UV-vis spectroscopic and rheo-SANS analysis revealed π-π interactions of the trans azobenzene chromophore within the micelles, influencing aggregate structure and contributing to micellar rigidity. Particles dispersed in a 1 wt% surfactant solution showed a fivefold increase in apparent diffusion coefficient after UV-irradiation of the mixture.

7.
Biomacromolecules ; 21(11): 4569-4576, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32597638

RESUMEN

Spontaneous formation of vesicles from the self-assembly of two specific surfactants, one zwitterionic (oleyl amidopropyl betaine, OAPB) and the other anionic (Aerosol-OT, AOT), is explored in water using small-angle scattering techniques. Two factors were found to be critical in the formation of vesicles: surfactant ratio, as AOT concentrations less than equimolar with OAPB result in cylindrical micelles or mixtures of micellar structures, and salt concentration, whereby increasing the amount of NaCl promotes vesicle formation by reducing headgroup repulsions. Small-angle neutron scattering measurements reveal that the vesicles are approximately 30-40 nm in diameter, depending on sample composition. Small-angle X-ray scattering measurements suggest preferential partitioning of OAPB molecules on the vesicle inner layer to support vesicular packing. Heating the vesicles to physiological temperature (37 °C) causes them to collapse into smaller ellipsoidal micelles (2-3 nm), with higher salt concentrations (≥10 mM) inhibiting this transition. These aggregates could serve as responsive carriers for loading or unloading of aqueous cargoes such as drugs and pharmaceuticals, with temperature changes serving as a simple release/uptake mechanism.


Asunto(s)
Micelas , Tensoactivos , Aniones , Betaína , Dispersión del Ángulo Pequeño
8.
Phys Chem Chem Phys ; 22(7): 4086-4095, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32031185

RESUMEN

Light-responsive binary (azobenzene + solvent) lyotropic liquid crystals (LCs) were investigated by structural modification of simple azobenzene molecules. Three benzoic acid-containing azobenzene molecules 4-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO1), 3-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO2) and 5-(4-(hydroxyphenyl)diazenyl)isophthalic acid (AZO3) were produced with various amide substitutions to produce tectons with a variety of hydrophobicity, size and branching. The LC mesophases formed by binary (azobenzene + solvent) systems with low volatility solvents dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMF) as well as the protic ionic liquids ethylammonium formate (EAF) and propylammonium formate (PAF), were investigated using a combination of small-angle X-ray and neutron scattering (SAXS and SANS) as well as polarising light microscopy (PLM). Increasing alkyl group length was found to have a strong influence on LC phase spacing, and changes in the position of substitution on the benzene ring influenced the preferred curvature of phases. UV-induced trans to cis isomerization of the samples was shown to influence ordering and optical birefringence, indicating potential applications in optical devices.

9.
Phys Chem Chem Phys ; 21(46): 25649-25657, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31723955

RESUMEN

The effects of adding silica nanoparticles of varying size and surface chemistry to a liquid crystal system were analysed using small-angle scattering and polarising light microscopy, with varying temperature and applied shear. It was found that nanoparticles aggregate at domain boundaries, causing a reduction in average liquid crystal domain size. These particles can inhibit phase transitions that occur at specific temperatures, ascribed to aggregates posing a kinetic barrier to rearrangement required for phase transitions. Nanoparticles can also promote the existence of specific phases, such as a deswollen hexagonal mesophase for the system studied here, suggested to be caused by silica aggregates 'templating' new phases. These findings have important implications for the application of such systems in biotechnology, and particularly the ability to completely inhibit a phase change at low temperature suggests the potential for mechanistic insight into new methods of cryopreservation.

10.
J Colloid Interface Sci ; 540: 410-419, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30665167

RESUMEN

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Herein, we explore the phase behavior of seven novel carbohydrate-based surfactants (CBS) containing a tri-ethylene glycol (TEG) linker between a glucose head-group and alkyl tail-group, with linear saturated (C8-18) and cis-unsaturated (C18:1) alkyl chains. At high aqueous concentrations, these glycolipid-like surfactants transition into a variety of lyotropic liquid crystalline phases following an expected concentration phase sequence: hexagonal (H1) → bicontinuous cubic (V1) → lamellar (Lα). Using polarizing light microscopy (PLM), a binary (surfactant-water) phase diagram for each surfactant was constructed across a temperature range (25-80 °C) revealing thermotropic behavior and a broadening of liquid crystal phase regions with increasing alkyl chain length. There was also a significant difference between saturated and unsaturated alkyl chains, due to the cis-unsaturated 'statistical bend' lowering the melting point. Small-angle X-ray scattering (SAXS) measurements were performed to characterize the liquid crystal phases, identifying highly-ordered p6m,Ia3d, and Lα crystallographic space-groups with up to 7 resolved Bragg peaks, likely due to the highly anisometric nature of the TEG-linked surfactants. The phases were shown to be more numerous and exhibited greater thermal-stability compared to well-characterized alkyl glucoside surfactants lacking an oligoethylene spacer in the literature. Finally, the characteristic dimensions of each phase were determined to enable visualization of the internal microstructures, providing insight into the impact of molecular shape and the distribution of hydro-philicity/phobicity on the formation and stability of liquid crystalline mesophases.

11.
Phys Chem Chem Phys ; 20(24): 16592-16603, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29873369

RESUMEN

Lamellar liquid crystals comprising oil, water and surfactant(s) were formulated and analysed in order to examine how these materials responded to the inclusion of inorganic nanoparticles, in terms of their structural and rheological characteristics. Lamellar phases were formed from mixtures of water, para-xylene and Triton X-100, and analysis was performed via small-angle neutron scattering (SANS), polarising light microscopy (PLM), and amplitude and viscosity sweeps. The partial replacement of Triton X-100 with oleic acid appeared to cause an increase in bilayer thickness, attributed to less efficient packing of the different molecules. Addition of oleic acid also appeared to cause both a loss in lamellar repeat ordering, attributed to heterogeneity of the bilayers, and a rise in long range order, potentially caused by the stiffer bilayers. Adding silica nanoparticles of different size and surface chemistry caused a stiffening of the samples at the expense of a longer-range lamellar repeat order. This strengthening is attributed to aggregation at the domain boundaries, and it was found that hydrophobic particles tended to form stronger aggregates while for larger particles (20 nm as opposed to 10 nm) aggregation was apparently reversible. These results give a more comprehensive understanding of how to reliably control the structural and rheological properties of lamellar liquid crystals, and emphasise the importance of the size and surface chemistry of any inclusions, for applications in cosmetics, drug delivery, and microfluidics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...