Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984492

RESUMEN

A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(µ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(µ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.

2.
J Am Chem Soc ; 146(28): 19590-19598, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957130

RESUMEN

Metal radicals have shown versatile reactivity in modern synthetic chemistry. However, the use of zinc radicals for molecular synthesis has been barely explored. Here, we show that a transient zinc radical can be formed through photoactivation of a zinc-zinc bonded compound, which is able to mediate the selective dimerization of alkenes and allenes. Treatment of dizinc compounds [L2Zn2] [L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(NCH2CH2PR2); R = Ph (LPh) or iPr (LiPr)] with a diverse array of aromatic alkenes under UV irradiation (365 nm) facilely afforded the head-to-head coupling products, i.e., 1,4-dizinciobutanes in high yields. In addition, arylallenes could also be selectively dimerized by the dizinc compound to give 2,5-dizincyl-functionalized 1,5-hexadienes under the same conditions. Control reactions of [LPh2Zn2] in the presence of UV irradiation isolated a zinc phenyl complex and a trimeric zinc phosphide complex resulting from C-P bond cleavage at the tridentate ligand. Reactions of photoactivated dizinc compounds with organic spin traps, i.e., 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 2,2'-bipyridine (2,2'-bpy), successfully isolated zinc radical trapping products [LZnOTEMP] and [LPhZn(2,2'-bpy)·-], respectively. The profile of alkene dimerization was elucidated by density functional theory calculations, which confirmed that a transient zinc radical [LZn·] was initially generated through homolytic Zn-Zn bond cleavage via photoactivation followed by single-electron transfer and radical dimerization. The unique selectivity of the current reaction was also studied computationally.

3.
Chem Sci ; 15(25): 9784-9792, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939147

RESUMEN

Transition metal multimetallic complexes have seen intense study due to their unique bonding and potential for cooperative reactivity, but actinide-transition metal (An-TM) species are far less understood. We have synthesized uranium- and thorium-osmium heterometallic polyhydride complexes in order to study An-Os bonding and investigate the reactivity of An-Os interactions. Computational studies suggest the presence of a significant bonding interaction between the actinide center and the four coordinated osmium centers supported by bridging hydrides. Upon photolysis, these complexes undergo intramolecular C-H activation with the formation of an Os-Os bond, while the thorium complex may activate an additional C-H bond of the benzene solvent, resulting in a µ-η1,η1 phenyl ligand across one Th-Os interaction.

4.
Inorg Chem ; 63(24): 11296-11310, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38836624

RESUMEN

We expand upon the synthetic utility of anionic rhenium complex Na[(BDI)ReCp] (1, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate) to generate several rhenium-phosphorus complexes. Complex 1 reacts in a metathetical manner with chlorophosphines Ph2PCl, MeNHP-Cl, and OHP-Cl to generate XL-type phosphido complexes 2, 3, and 4, respectively (MeNHP-Cl = 2-chloro-1,3-dimethyl-1,3,2-diazaphospholidine; OHP-Cl = 2-chloro-1,3,2-dioxaphospholane). Crystallographic and computational investigations of phosphido triad 2, 3, and 4 reveal that increasing the electronegativity of the phosphorus substituent (C < N < O) results in a shortening and strengthening of the rhenium-phosphorus bond. Complex 1 reacts with iminophosphane Mes*NPCl (Mes* = 2,4,6-tritert-butylphenyl) to generate linear iminophosphanyl complex 5. In the presence of a suitable halide abstraction reagent, 1 reacts with the dichlorophosphine iPr2NPCl2 to afford cationic phosphinidene complex 6+. Complex 6+ may be reduced by one electron to form 6•, a rare example of a stable, paramagnetic phosphinidene complex. Spectroscopic and structural investigations, as well as computational analyses, are employed to elucidate the influence of the phosphorus substituent on the nature of the rhenium-phosphorus bond in 2 through 6. Furthermore, we examine several common analogies employed to understand metal phosphido, phosphinidene, and iminophosphanyl complexes.

5.
J Am Chem Soc ; 146(27): 18306-18319, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936814

RESUMEN

A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(µ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(µ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.

6.
Chem Sci ; 15(18): 6874-6883, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725506

RESUMEN

Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.

7.
Chem Sci ; 15(18): 6842-6852, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725514

RESUMEN

End-on binding of dinitrogen to low valent metal centres is common in transition metal chemistry but remains extremely rare in f-elements chemistry. In particular, heterobimetallic end-on N2 bridged complexes of lanthanides are unprecedented despite their potential relevance in catalytic reduction of dinitrogen. Here we report the synthesis and characterization of a series of N2 bridged heterobimetallic complexes of U(iii), Ln(iii) and Ln(ii) which were prepared by reacting the Fe dinitrogen complex [Fe(depe)2(N2)] (depe = 1,2-bis(diethylphosphino)-ethane), complex A with [MIII{N(SiMe3)2}3] (M = U, Ce, Sm, Dy, Tm) and [LnII{N(SiMe3)2}2], (Ln = Sm, Yb). Despite the lack of reactivity of the U(iii), Ln(iii) and Ln(ii) amide complexes with dinitrogen, the end-on dinitrogen bridged heterobimetallic complexes [{Fe(depe)2}(µ-η1:η1-N2)(M{N(SiMe3)2}3)], 1-M (M = U(iii), Ce(iii), Sm(iii), Dy(iii) and Tm(iii)), [{Fe(depe)2}(µ-η1:η1-N2)(Ln{N(SiMe3)2}2)], 1*-Ln (Ln = Sm(ii), Yb(ii)) and [{Fe(depe)2(µ-η1:η1-N2)}2{SmII{N(SiMe3)2}2}], 3 could be prepared. The synthetic method used here allowed to isolate unprecedented end-on bridging N2 complexes of divalent lanthanides which provide relevant structural models for the species involved in the catalytic reduction of dinitrogen by Fe/Sm(ii) systems. Computational studies showed an essentially electrostatic interaction of the end-on bridging N2 with both Ln(iii) and Ln(ii) complexes with the degree of N2 activation correlating with their Lewis acidity. In contrast, a back-bonding covalent contribution to the U(iii)-N2Fe bond was identified by computational studies. Computational studies also suggest that end-on binding of N2 to U(iii) and Ln(ii) complexes is favoured for the iron-bound N2 compared to free N2 due to the higher N2 polarization.

8.
Chemistry ; : e202401262, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777793

RESUMEN

Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4 F] (2 a, Cp*=η3-C5Me5, Ln=N,N,N',N'-tetramethylethylenediamine, TMEDA; 2 b, Ln=N,N,N',N'-tetraethylethylenediamine, TEEDA; 2 c, Cp*=η1-C5Me5, Ln=N,N,N',N'',N''-pentamethyldiethylenetriamine, PMDTA; Ar4 F=(3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4 F] (3 a,b, m=1; 3 c, m=0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2 b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2 b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4 F] (5 b). Cation 2 b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2 c underwent C-H bond activation in acetonitrile to give a dinuclear µ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4 F]2 (6 c).

9.
Angew Chem Int Ed Engl ; : e202407339, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714494

RESUMEN

Two-electron oxidative addition is one of the most important elementary reactions for d-block transition metals but it is uncommon for f-block elements. Here, we report the first examples of intermolecular oxidative addition of E-H (E=C, N) bonds to uranium(II) centers. The transient U(II) species was formed in-situ by reducing a heterometallic cluster featuring U(IV)-Pd(0) bonds with potassium-graphite (KC8). Oxidative addition of C-H or N-H bonds to the U(II) centers was observed when this transient U(II) species was treated with benzene, carbazole or 1-adamantylamine, respectively. The U(II) centers could also react with tetracene, biphenylene or N2O, leading to the formation of arene reduced U(IV) products and uranyl(VI) species via two- or four-electron processes. This study demonstrates that the intermolecular two-electron oxidative addition reactions are viable for actinide elements.

10.
Inorg Chem ; 63(16): 7177-7188, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38598523

RESUMEN

While synthesizing a series of rhenium-lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(µ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(µ-η1:η1-N2)Re(η5-Cp)(BDI)][(µ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium-rhenium complex (η8-COT)Er[(µ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium-rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(µ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(µ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium-rare earth triple inverse sandwich complex Y[(µ-η5:η5-Cp)Re(BDI)]3 (6-Y).

11.
Inorg Chem ; 63(18): 8493-8501, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38651332

RESUMEN

Oxidative addition of dihydrogen across a metal-metal bond to form reactive metal hydrides in homogeneous catalysis is known for transition metals but not for zinc(I)-zinc(I) bond as found in Carmona's eponymous dizinconene [Zn2Cp*2] (Cp* = η5-C5Me5). Dihydrogen reacted with the heteroleptic zinc(I)-zinc(I) bonded cation [(L2)Zn-ZnCp*][BAr4F] (L2 = TMEDA, N,N,N',N'-tetramethylethylenediamine, TEEDA, N,N,N',N'-tetraethylethylenediamine; ArF = 3,5-(CF3)2C6H3) under 2 bar at 80 °C to give the zinc(II) hydride cation [(L2)ZnH(thf)][BAr4F] along with zinc metal and Cp*H derived from the intermediate [Cp*ZnH]. DFT calculations show that the cleavage of dihydrogen occurs through a highly unsymmetrical transition state. Mechanistic studies agree with a heterolytic cleavage of dihydrogen as a result of the cationic charge and unsymmetrical ligand coordination. To explore the existence of zinc(I) hydride, thermally unstable hydridotriphenylborate complexes of zinc(I) [(L2)Zn(HBPh3)-ZnCp*] (L2 = TMEDA, TEEDA; TMPDA, N,N,N',N'-tetramethyl-1,3-propylenediamine) have been prepared by salt metathesis and were shown to undergo fast exchange with both BPh3 and [HBPh3]-.

12.
J Am Chem Soc ; 146(18): 12790-12798, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38684067

RESUMEN

Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.

13.
Angew Chem Int Ed Engl ; 63(29): e202405494, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38661015

RESUMEN

Polynuclear metal hydride clusters play important roles in various catalytic processes, with most of the reported polynuclear metal hydride clusters adopting a polyhedral three-dimensional structure. Herein, we report the first example of a planar tetranuclear uranium hydride cluster [(CpCMe2CMe2Cp)U]4(µ2-H)4(µ3-H)4 (U4H8). It was synthesized by reacting an ansa-bis(cyclopentadienyl) ligand-supported uranium chloride precursor [(CpCMe2CMe2Cp)U]3(µ2-Cl)3(µ3-Cl)2 with NaHBEt3. The presence of hydrides in U4H8 was confirmed by NMR spectroscopy and its reactivity with phenol and carbon tetrachloride. DFT calculations also facilitated the determination of the hydrides' positions in U4H8, featuring four bridging µ2-H ligands and four face-capping µ3-H ligands, with the four U centers arranged in a rhombic geometry. The U4H8 represents not only the first example of planar polynuclear actinide metal hydride cluster but also the uranium hydride cluster with the highest nuclearity reported to date.

14.
Chem Sci ; 15(14): 5152-5162, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577349

RESUMEN

Coupling of octahedral, terminal d1 molybdenum(v) nitrido complexes supported by a dianionic pentadentate ligand via N-N bond formation to give µ-dinitrogen complexes was found to be thermodynamically feasible but faces significant kinetic barriers. However, upon oxidation, a kinetically favored nucleophilic/electrophilic N-N bond forming mechanism was enabled to give monocationic µ-dinitrogen dimers. Computational and experimental evidence for this "oxidation-induced ambiphilic nitrido coupling" mechanism is presented. The factors influencing release of dinitrogen from the resulting µ-dinitrogen dimers were also probed and it was found that further oxidation to a dicationic species is required to induce (very rapid) loss of dinitrogen. The mechanistic path discovered for N-N bond formation and dinitrogen release follows an ECECC sequence (E = "electrochemical step"; C = "chemical step"). Experimental evidence for the intermediacy of a highly electrophilic, cationic d0 molybdenum(vi) nitrido in the N-N bond forming mechanism via trapping with an isonitrile reagent is also discussed. Together these results are relevant to the development of molecular catalysts capable of mediating ammonia oxidation to dihydrogen and dinitrogen.

15.
Chem Sci ; 15(10): 3495-3501, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455028

RESUMEN

Guanidinate homometallic rare-earth ethyl complexes [LLn(µ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(µ2-η1:η2-Et)(µ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(µ2-η1-Et)2(AlEt)]2(µ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(µ3-η1:η1:η2-C2H4)[(µ2-η1-Et)(AlEt2)(µ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(µ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.

16.
Angew Chem Int Ed Engl ; 63(23): e202318689, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38547324

RESUMEN

The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.

17.
Chemistry ; 30(27): e202400681, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417144

RESUMEN

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

18.
Chem Commun (Camb) ; 60(21): 2966-2969, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38376444

RESUMEN

The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(µ-N)2} (4).

19.
Chem Commun (Camb) ; 60(8): 1016-1019, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38170497

RESUMEN

Reduction of the magnesium(II) diamide [Mg(TripNON)] (TripNON = 4,5-bis(2,4,6-triisopropylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5% w/w K/KI leads to a good yield of a dianionic dimagnesium(I) species, as its potassium salt, [{K(TripNON)Mg}2]. An X-ray crystallographic analysis shows the molecule to contain a very long Mg-Mg bond (3.137(2) Å). The formation of [{K(TripNON)Mg}2] contrasts with a previously reported reduction of a magnesium(II) complex incorporating a bulkier diamide ligand, which instead afforded a magnesium-dinitrogen complex. In the current study, [{K(TripNON)Mg}2] has been shown to be a viable reagent for the reductive activation of CO, H2 and N2O.

20.
J Am Chem Soc ; 146(2): 1257-1261, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38189272

RESUMEN

Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...