Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Control Release ; 374: 254-266, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151828

RESUMEN

Biologics have been widely used as injectables in the treatment of inflammatory bowel disease (IBD). Different local treatment attempts have been developed in recent years. However, maintaining systemic levels of biologics is still crucial for achieving colitis remission. An equilibrium between systemic and local concentrations of biologics is therefore essential for treatment of colitis. Current formulations struggle to create optimal balance between drug concentrations in plasma and the colonic wall. Addressing this challenge, we developed a rectally delivered in situ foam that generates CO2via a reaction between potassium bicarbonate (PB) and citric acid (CA) without the aid of an external device. An anti-TNF-α antibody fragment (Fab) was loaded into the foam formulation, which promoted prolonged colon retention and improved Fab distribution up to proximal colon following rectal administration to mice. In addition, we observed increased plasma Fab concentrations in mice receiving the rectal Fab foam compared to a Fab solution. In a non-everted rat gut ex vivo model, a single exposure to the CO2-containing foam improved macromolecule transepithelial flux across colonic tissue by over ten-fold. Foam efficacy for Fab was investigated in a range of colitis mouse models, from acute to chronic. This non-invasive formulation platform demonstrates potential to overcome existing limitations in delivering biologics to inflamed colonic tissue.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/química , Colon/metabolismo , Factor de Necrosis Tumoral alfa , Sistemas de Liberación de Medicamentos , Administración Rectal , Colitis/tratamiento farmacológico , Ácido Cítrico/química , Ácido Cítrico/administración & dosificación , Bicarbonatos/química , Femenino , Ratones , Ratas Sprague-Dawley , Ratas
2.
Drug Deliv Transl Res ; 14(10): 2917-2929, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38615156

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disease that can progress to end-stage conditions with life-threatening complications, but no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNC) are very versatile platforms that are easy to produce and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being studied in clinical trials in the context of MASLD. Our nanosystem provides with increased levels of the native GLP-1 and increased plasmatic absorption of the encapsulated GLP-1 analog (semaglutide). Our goal was to use our strategy to demonstrate a better outcome and a greater impact on the metabolic syndrome associated with MASLD and on liver disease progression with our strategy compared with the oral marketed version of semaglutide, Rybelsus®. Therefore, we studied the effect of our nanocarriers on a dietary mouse model of MASLD, the Western diet model, during a daily chronic treatment of 4 weeks. Overall, the results showed a positive impact of semaglutide-loaded lipid nanocapsules towards the normalization of glucose homeostasis and insulin resistance. In the liver, there were no significant changes in lipid accumulation, but an improvement in markers related to inflammation was observed. Overall, our strategy had a positive trend on the metabolic syndrome and at reducing inflammation, mitigating the progression of the disease. Oral administration of the nanosystem was more efficient at preventing the progression of the disease to more severe states when compared to the administration of Rybelsus®, as a suspension.


Asunto(s)
Péptidos Similares al Glucagón , Lípidos , Nanocápsulas , Animales , Nanocápsulas/administración & dosificación , Péptidos Similares al Glucagón/administración & dosificación , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/farmacocinética , Lípidos/sangre , Lípidos/química , Lípidos/administración & dosificación , Ratones Endogámicos C57BL , Masculino , Ratones , Hígado Graso/tratamiento farmacológico , Resistencia a la Insulina , Hígado/metabolismo , Hígado/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Int J Pharm ; 650: 123701, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38081556

RESUMEN

Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Ratones , Animales , Óxido de Zinc/química , Hipoglucemiantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas/química , Zinc , Oxidantes , Nanopartículas del Metal/química
4.
Biomacromolecules ; 24(9): 4229-4239, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37638739

RESUMEN

In this study, a circular conjugate of granulocyte colony-stimulating factor (G-CSF) was prepared by conjugating the two end-chains of poly(ethylene glycol) (PEG) to two different sites of the protein. For the orthogonal conjugation, a heterobifunctional PEG chain was designed and synthesized, bearing the dipeptide ZGln-Gly (ZQG) at one end-chain, for transglutaminase (TGase) enzymatic selective conjugation at Lys41 of G-CSF, and an aldehyde group at the opposite end-chain, for N-terminal selective reductive alkylation of the protein. The cPEG-Nter/K41-G-CSF circular conjugate was characterized by physicochemical methods and compared with native G-CSF and the corresponding linear monoconjugates of G-CSF, PEG-Nter-G-CSF, and PEG-K41-G-CSF. The results demonstrated that the circular conjugate had improved physicochemical and thermal stability, prolonged pharmacokinetic interaction, and retained the biological activity of G-CSF. The PEGylation strategy employed in this study has potential applications in the design of novel protein-based therapeutics.


Asunto(s)
Aldehídos , Factor Estimulante de Colonias de Granulocitos , Alquilación , Fenómenos Químicos , Dipéptidos
5.
J Control Release ; 356: 542-553, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907563

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects approximately 25% of the global adult population and can progress to end-stage liver disease with life-threatening complications; however, no pharmacologic therapy has been approved. Drug delivery systems such as lipid nanocapsules (LNCs) are a very versatile platform, easy to produce, and can induce the secretion of the native glucagon-like peptide 1 (GLP-1) when orally administered. GLP-1 analogs are currently being extensively studied in clinical trials in the context of NAFLD. Our nanosystem provides with increased levels of GLP-1, triggered by the nanocarrier itself, and by the plasmatic absorption of the encapsulated synthetic analog (exenatide). Our goal in this study was to demonstrate a better outcome and a greater impact on the metabolic syndrome and liver disease progression associated with NAFLD with our nanosystem than with the subcutaneous injection of the GLP-1 analog alone. To that end, we studied the effect of chronic administration (one month) of our nanocarriers in two mouse models of early NASH: a genetic model (foz/foz mice fed a high fat diet (HFD)) and a dietary model (C57BL/6J mice fed with a western diet plus fructose (WDF)). Our strategy had a positive impact in promoting the normalization of glucose homeostasis and insulin resistance in both models, mitigating the progression of the disease. In the liver, diverging results were observed between the models, with the foz/foz mice presenting a better outcome. Although a complete resolution of NASH was not achieved in either model, the oral administration of the nanosystem was more efficient at preventing the progression of the disease into more severe states than the subcutaneous injection. We thus confirmed our hypothesis that the oral administration of our formulation has a stronger effect on alleviating the metabolic syndrome associated with NAFLD than the subcutaneous injection of the peptide.


Asunto(s)
Síndrome Metabólico , Nanocápsulas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Nanocápsulas/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Lípidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...