Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Commun Biol ; 7(1): 615, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777862

RESUMEN

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Asunto(s)
Adenosina Desaminasa , Hematopoyesis , Células Madre Hematopoyéticas , Inflamación , Pez Cebra , Animales , Pez Cebra/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/deficiencia , Células Madre Hematopoyéticas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Humanos , Transducción de Señal , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982845

RESUMEN

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients' survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Animales , Humanos , Glioblastoma/metabolismo , Histona Desacetilasa 6 , Pez Cebra , Supervivencia Celular , Proteínas Hedgehog , Temozolomida/farmacología , Lisosomas/metabolismo , Esfingolípidos , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos
3.
Pharmacol Res ; 183: 106378, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35918044

RESUMEN

Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighting the urgent need to discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.


Asunto(s)
Proteínas Hedgehog , Inhibidores de Histona Desacetilasas , Leucemia Mieloide Aguda , Adulto , Animales , Proliferación Celular , Proteínas Hedgehog/metabolismo , Células Madre Hematopoyéticas , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Pez Cebra/metabolismo
4.
Front Endocrinol (Lausanne) ; 12: 664645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803902

RESUMEN

Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.


Asunto(s)
Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Niño , Femenino , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Adulto Joven
5.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575879

RESUMEN

Different forms of sudden cardiac death have been described, including a recently identified form of genetic arrhythmogenic disorder, named "Triadin KnockOut Syndrome" (TKOS). TKOS is associated with recessive mutations in the TRDN gene, encoding for TRIADIN, but the pathogenic mechanism underlying the malignant phenotype has yet to be completely defined. Moreover, patients with TKOS are often refractory to conventional treatment, substantiating the need to identify new therapeutic strategies in order to prevent or treat cardiac events. The zebrafish (Danio rerio) heart is highly comparable to the human heart in terms of functions, signal pathways and ion channels, representing a good model to study cardiac disorders. In this work, we generated the first zebrafish model for trdn loss-of-function, by means of trdn morpholino injections, and characterized its phenotype. Although we did not observe any gross cardiac morphological defect between trdn loss-of-function embryos and controls, we found altered cardiac rhythm that was recovered by the administration of arrhythmic drugs. Our model will provide a suitable platform to study the effect of TRDN mutations and to perform drug screening to identify new pharmacological strategies for patients carrying TRDN mutations.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Musculares/deficiencia , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Proteínas Portadoras , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Mutación con Pérdida de Función , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fenotipo , Síndrome , Pez Cebra
6.
Pharmacol Res ; 170: 105750, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214631

RESUMEN

Duchenne muscular dystrophy (DMD) causes progressive skeletal muscle degeneration and currently there are few therapeutic options. The identification of new drug targets and their validation in model systems of DMD could be a promising approach to make progress in finding new treatments for this lethal disease. Histone deacetylases (HDACs) play key roles in myogenesis and the therapeutic approach targeting HDACs in DMD is in an advanced phase of clinical trial. Here, we show that the expression of HDAC8, one of the members of the HDAC family, is increased in DMD patients and dystrophic zebrafish. The selective inhibition of HDAC8 with the PCI-34051 inhibitor rescues skeletal muscle defects, similarly to the treatment with the pan-HDAC inhibitor Givinostat. Through acetylation profile of zebrafish with HDAC8 dysregulation, we identified new HDAC8 targets involved in cytoskeleton organization such as tubulin that, when acetylated, is a marker of stable microtubules. Our work provides evidence of HDAC8 overexpression in DMD patients and zebrafish and supports its specific inhibition as a new valuable therapeutic approach in the treatment of this pathology.


Asunto(s)
Diferenciación Celular , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Indoles , Desarrollo de Músculos , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteínas Represoras , Proteínas de Pez Cebra , Animales , Humanos , Acetilación , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Procesamiento Proteico-Postraduccional , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352756

RESUMEN

Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Embrión no Mamífero/citología , Perfilación de la Expresión Génica , Genoma , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Cohesinas
8.
Front Cell Dev Biol ; 8: 844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015043

RESUMEN

Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.

9.
J Cell Mol Med ; 24(11): 6272-6282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32323916

RESUMEN

The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Leucémica de la Expresión Génica , Hematopoyesis/genética , Proteínas de Pez Cebra/genética , Adulto , Anciano , Animales , Células de la Médula Ósea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Niño , Estudios de Cohortes , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación hacia Abajo/genética , Humanos , Leucemia Mieloide Aguda/genética , Megacariocitos/metabolismo , Persona de Mediana Edad , Donantes de Tejidos , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Front Cell Dev Biol ; 7: 21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873408

RESUMEN

The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.

11.
Haematologica ; 104(7): 1332-1341, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630974

RESUMEN

The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/genética , Adulto , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Nucleofosmina , Fenotipo , Vía de Señalización Wnt , Pez Cebra , Cohesinas
12.
J Cell Physiol ; 234(5): 6067-6076, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30246374

RESUMEN

Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.


Asunto(s)
Histona Desacetilasas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Proteínas Represoras/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Músculo Esquelético/citología , Mioblastos/metabolismo , Pez Cebra
13.
Mol Cytogenet ; 5(1): 32, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22794123

RESUMEN

The importance of the genetic factor in the aetiology of premature ovarian failure (POF) is emphasized by the high percentage of familial cases and X chromosome abnormalities account for 10% of chromosomal aberrations. In this study, we report the detailed analysis of 4 chromosomal abnormalities involving the X chromosome and associated with POF that were detected during a screening of 269 affected women. Conventional and molecular cytogenetics were valuable tools for locating the breakpoint regions and thus the following karyotypes were defined: 46,X,der(X)t(X;19)(p21.1;q13.42)mat, 46,X,t(X;2)(q21.33;q14.3)dn, 46,X,der(X)t(X;Y)(q26.2;q11.223)mat and 46,X,t(X;13)(q13.3;q31)dn. A bioinformatic analysis of the breakpoint regions identified putative candidate genes for ovarian failure near the breakpoint regions on the X chromosome or on autosomes that were involved in the translocation event. HS6ST1, HS6ST2 and MATER genes were identified and their functions and a literature review revealed an interesting connection to the POF phenotype. Moreover, the 19q13.32 locus is associated with the age of onset of the natural menopause. These results support the position effect of the breakpoint on flanking genes, and cytogenetic techniques, in combination with bioinformatic analysis, may help to improve what is known about this puzzling disorder and its diagnostic potential.

14.
J Biomed Biotechnol ; 2011: 370195, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21318170

RESUMEN

The importance of X chromosome in the aetiology of premature ovarian failure (POF) is well-known but in many cases POF still remains idiopathic. Chromosome aneuploidy increase is a physiological phenomenon related to aging, but the role of low-level sex chromosome mosaicism in ovarian function is still undiscovered. Standard cytogenetic analysis was carried out in a total of 269 patients affected by POF: 27 chromosomal abnormalities were identified, including X chromosome and autosomal structural and numerical abnormalities. In 47 patients with 46,XX karyotype we performed interphase FISH using X alpha-satellite probe in order to identify X chromosome mosaicism rate. Aneuploidy rate in the patient group was significantly higher than the general population group. These findings underline the importance of X chromosome in the aetiology of POF and highlight the potential role of low-level sex chromosome mosaicism in ovarian aging that may lead to a premature onset of menopause.


Asunto(s)
Análisis Citogenético/métodos , Insuficiencia Ovárica Primaria/genética , Adulto , Envejecimiento/genética , Núcleo Celular/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 18/genética , Cromosomas Humanos X/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Interfase , Persona de Mediana Edad , Monosomía/genética , Insuficiencia Ovárica Primaria/patología
15.
BMC Biol ; 7: 41, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19607661

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder associated with the partial deletion of integral numbers of 3.3 kb D4Z4 DNA repeats within the subtelomere of chromosome 4q. A number of candidate FSHD genes, adenine nucleotide translocator 1 gene (ANT1), FSHD-related gene 1 (FRG1), FRG2 and DUX4c, upstream of the D4Z4 array (FSHD locus), and double homeobox chromosome 4 (DUX4) within the repeat itself, are upregulated in some patients, thus suggesting an underlying perturbation of the chromatin structure. Furthermore, a mouse model overexpressing FRG1 has been generated, displaying skeletal muscle defects. RESULTS: In the context of myogenic differentiation, we compared the chromatin structure and tridimensional interaction of the D4Z4 array and FRG1 gene promoter, and FRG1 expression, in control and FSHD cells. The FRG1 gene was prematurely expressed during FSHD myoblast differentiation, thus suggesting that the number of D4Z4 repeats in the array may affect the correct timing of FRG1 expression. Using chromosome conformation capture (3C) technology, we revealed that the FRG1 promoter and D4Z4 array physically interacted. Furthermore, this chromatin structure underwent dynamic changes during myogenic differentiation that led to the loosening of the FRG1/4q-D4Z4 array loop in myotubes. The FRG1 promoter in both normal and FSHD myoblasts was characterized by H3K27 trimethylation and Polycomb repressor complex binding, but these repression signs were replaced by H3K4 trimethylation during differentiation. The D4Z4 sequences behaved similarly, with H3K27 trimethylation and Polycomb binding being lost upon myogenic differentiation. CONCLUSION: We propose a model in which the D4Z4 array may play a critical chromatin function as an orchestrator of in cis chromatin loops, thus suggesting that this repeat may play a role in coordinating gene expression.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Desarrollo de Músculos/genética , Distrofia Muscular Facioescapulohumeral/genética , Mioblastos Esqueléticos/metabolismo , Proteínas Nucleares/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos Par 4/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji , Masculino , Proteínas de Microfilamentos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos Esqueléticos/ultraestructura , Proteínas Nucleares/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Proteínas de Unión al ARN , Proteínas Represoras/metabolismo , Secuencias Repetidas en Tándem/fisiología
16.
Hum Reprod ; 24(8): 2023-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19363042

RESUMEN

BACKGROUND: Three variants of the human INHA gene have been reported to be associated with premature ovarian failure (POF) in case-control studies involving a small number of patients and controls. Since inhibin has a fundamental role in the control of ovarian function, it is important to establish the relevance of the reported variants for disease risk. METHODS: Three independent POF cohorts, recruited in Northern and Central Italy and in Germany consisting of a total of 611 patients and 1084 matched controls, were genotyped for the three variants: -16C > T, -124A > G and 769G > A. RESULTS: No significant difference was detected between allelic frequencies of the INHA promoter variants between POF patients and controls. The rare allele in the coding variant appeared to be more frequent among the control populations. CONCLUSIONS: The association between the INHA promoter variants and POF could not be replicated, and our results suggest that this discrepancy is likely to be due to the small sample size of previous studies. The rare allele of the coding variant seems to exert a protective effect against loss of ovarian function, which should be confirmed in additional large and ethnically diverse cohorts.


Asunto(s)
Inhibinas/genética , Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Niño , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
17.
Hum Mutat ; 30(5): 804-10, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19263482

RESUMEN

Bone morphogenetic protein-15 (BMP15) is selectively synthesized by oocytes as a pre-proprotein and is considered an ovarian follicle organizer whose adequate function is critical for female fertility. Missense mutations were reported in primary ovarian insufficiency (POI) but their biological impact remained unexplored. Here, screening of 300 unrelated idiopathic overt POI women with primary or secondary amenorrhea (SA) led to the identification of six heterozygous BMP15 variations in 29 of them. All alterations are nonconservative and include one insertion of three nucleotides (p.L262_L263insL) and five missense substitutions. Except for the p.S5R located in the signal sequence, the other variants (p.R68W, p.R138H, p.L148P, and p.A180T) localize in the proregion, which is essential for the processing and secretion of bioactive dimers. The mutations p.R68W, p.L148P, and the novel p.R138H lead to marked reductions of mature protein production. Their biological effects, evaluated by a novel luciferase-reporter assay in a human granulosa cell (GC) line, were significantly reduced. Cotransfection experiments of defective mutants with equal amounts of wild-type BMP15 cDNA, thus reproducing the heterozygous state seen in patients, did not generate a complete recovery of wild-type activity. No or minor deleterious effects were detected for the variants p.L262_L263insL, p.A180T, or p.S5R. In conclusion, heterozygous BMP15 mutations associated with the early onset of overt POI lead to defective secretion of bioactive dimers. These findings support the concept that an adequate amount of BMP15 secreted in the follicular fluid is critical for female fertility. We propose to consider the screening of BMP15 mutations among the analyses for the prediction of POI risk.


Asunto(s)
Proteína Morfogenética Ósea 15/biosíntesis , Proteína Morfogenética Ósea 15/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Enfermedades del Ovario/genética , Adolescente , Adulto , Línea Celular , Niño , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Femenino , Genes Reporteros , Humanos , Luciferasas , Proteínas Mutantes/metabolismo , Procesamiento Proteico-Postraduccional
18.
BMC Evol Biol ; 7: 39, 2007 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-17359533

RESUMEN

BACKGROUND: In order to obtain insights into the functionality of the human 4q35.2 domain harbouring the facioscapulohumeral muscular dystrophy (FSHD) locus, we investigated in African apes genomic and chromatin organisations, and the nuclear topology of orthologous regions. RESULTS: A basic block consisting of short D4Z4 arrays (10-15 repeats), 4q35.2 specific sequences, and approximately 35 kb of interspersed repeats from different LINE subfamilies was repeated at least twice in the gorilla 4qter. This genomic organisation has undergone evolutionary remodelling, leading to the single representation of both the D4Z4 array and LINE block in chimpanzee, and the loss of the LINE block in humans. The genomic remodelling has had an impact on 4qter chromatin organisation, but not its interphase nuclear topology. In comparison with humans, African apes show very low or undetectable levels of FRG1 and FRG2 histone 4 acetylation and gene transcription, although histone deacetylase inhibition restores gene transcription to levels comparable with those of human cells, thus indicating that the 4qter region is capable of acquiring a more open chromatin structure. Conversely, as in humans, the 4qter region in African apes has a very peripheral nuclear localisation. CONCLUSION: The 4q subtelomere has undergone substantial genomic changes during evolution that have had an impact on chromatin condensation and the region's transcriptional regulation. Consequently, the 4qter genes in African apes and humans seem to be subjected to a different strategy of regulation in which LINE and D4Z4 sequences may play a pivotal role. However, the effect of peripheral nuclear anchoring of 4qter on these regulation mechanisms is still unclear. The observed differences in the regulation of 4qter gene expression between African apes and humans suggest that the human 4q35.2 locus has acquired a novel functional relevance.


Asunto(s)
Cromosomas Humanos Par 4 , Cromosomas de los Mamíferos , Gorilla gorilla/genética , Distrofia Muscular Facioescapulohumeral/genética , Pan troglodytes/genética , Animales , Southern Blotting , Cromatina/genética , Clonación Molecular , Evolución Molecular , Marcadores Genéticos , Biblioteca Genómica , Humanos , Hibridación Fluorescente in Situ , Mapeo Físico de Cromosoma , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Cancer Biol Ther ; 6(2): 238-44, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17218779

RESUMEN

The constitutive over-expression of the retinol dehydrogenase 10 (RDH10) gene, involved in retinoic acid (RA) biosynthesis, produced in HepG2 cells a significant antiproliferative response, but not signs of apoptosis. An indirect assay based on the Chloramphenicol AcetylTransferase (CAT) reporter gene driven by a retinoic acid responsive element (RARE) suggests in genetically modified HepG2 cells an increase of the endogenous RA concentration. Furthermore, the growth arrest of HepG2 cells over-expressing the RDH10 gene was associated with the upregulation and downregulation of, respectively, RARbeta/p21(Cip1) and CycE/CdK2 mRNAs. These results indicated that forced expression of RDH10 produces antiproliferative effects highly comparable to those achieved by retinoids treatment and thus the development of a gene therapy, finalized at the restoration of the enzymatic and receptorial machinery of the RA pathway, could be a possible curative strategy for hepatocellular carcinoma (HCC).


Asunto(s)
Carcinoma Hepatocelular/genética , Ciclo Celular/genética , Neoplasias Hepáticas/genética , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Línea Celular Tumoral , Proliferación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...