Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 692: 108515, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32791141

RESUMEN

Apoptosis-inducing factor (AIF) is a flavoprotein and essential partner of the CHCHD4 redox protein during the mitochondrial intermembrane space import machinery. Mammalian AIF has three cysteine residues, which have received little attention. Previous reports have evidenced a redox interaction between AIF and thioredoxin 1 (Trx1), particularly after oxidant conditions. Therefore, we asked whether the cysteine residues of the human AIF could be oxidized. Our data showed that endogenous AIF could be oxidized to disulfide-linked conjugates (DLC). Overexpressed WT AIF in HEK293T cells, as well as recombinant WT AIF, formed DLC. Expression of C256S, C317S or C441S AIF mutants severely inhibited DLC formation in cells exposed to oxidants. In vitro, DLC formation was completely precluded with C256S and C441S AIF mutants and partially inhibited with the C317S mutant. DLC was shown to enhance cellular susceptibility to apoptosis induced by staurosporine, likely by preventing AIF to maintain mitochondrial oxidative phosphorylation. Cells with decreased expression of Trx1 produced more AIF DLC than those with normal Trx1 levels, and in vitro, Trx1 was able to decrease the amount of AIF DLC. Finally, confocal analysis, as well as immunoblotting of mitochondrial fraction, indicated that a fraction of Trx1 is present in mitochondria. Overall, these data provide evidence that all three cysteine residues of AIF can be oxidized to DLC, which can be disrupted by mitochondrial Trx1.


Asunto(s)
Factor Inductor de la Apoptosis , Apoptosis , Disulfuros , Sustitución de Aminoácidos , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutación Missense , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacología
2.
Free Radic Biol Med ; 89: 72-82, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26197052

RESUMEN

Despite extensive investigation of the irreversible oxidations undergone by proteins in vitro and in vivo, the products formed from the oxidation of Trp residues remain incompletely understood. Recently, we characterized a ditryptophan cross-link produced by the recombination of hSOD1-tryptophanyl radicals generated from attack of the carbonate radical produced during the bicarbonate-dependent peroxidase activity of the enzyme. Here, we examine whether the ditryptophan cross-link is produced by the attack of the carbonate radical on proteins other than hSOD1. To this end, we treated hen egg white lysozyme with photolytically and enzymatically generated carbonate radical. The radical yields were estimated and the lysozyme modifications were analyzed by SDS-PAGE, western blot, enzymatic activity and MS/MS analysis. Lysozyme oxidation by both systems resulted in its inactivation and dimerization. Lysozyme treated with the photolytic system presented monomers oxidized to hydroxy-tryptophan at Trp(28) and Trp(123) and N-formylkynurenine at Trp(28), Trp(62) and Trp(123). Lysozyme treated with the enzymatic system rendered monomers oxidized to N-formylkynurenine at Trp(28). The dimers were characterized as lysozyme-Trp(28)-Trp(28)-lysozyme and lysozyme-Trp(28)-Trp(32)-hSOD1. The results further demonstrate that the carbonate radical is prone to causing biomolecule cross-linking and hence, may be a relevant player in pathological mechanisms. The possibility of exploring the formation of ditryptophan cross-links as a carbonate radical biomarker is discussed.


Asunto(s)
Carbonatos/química , Radicales Libres/química , Muramidasa/química , Superóxido Dismutasa/química , Triptófano/química , Animales , Western Blotting , Carbonatos/metabolismo , Pollos , Reactivos de Enlaces Cruzados/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Radicales Libres/metabolismo , Peróxido de Hidrógeno/análisis , Muramidasa/metabolismo , Oxidación-Reducción , Multimerización de Proteína , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Espectrometría de Masas en Tándem , Triptófano/metabolismo
3.
Biochem J ; 455(1): 37-46, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23855710

RESUMEN

Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of various diseases via mechanisms that are not completely understood. Recently, we reported that high doses of tempol moderately increased survival in a rat model of ALS (amyotrophic lateral sclerosis) while decreasing the levels of oxidized hSOD1 (human Cu,Zn-superoxide dismutase) in spinal cord tissues. To better understand such a protective effect in vivo, we studied the effects of tempol on hSOD1 oxidation in vitro. The chosen oxidizing system was the bicarbonate-dependent peroxidase activity of hSOD1 that consumes H2O2 to produce carbonate radical, which oxidizes the enzyme. Most of the experiments were performed with 30 µM hSOD1, 25 mM bicarbonate, 1 mM H2O2, 0.1 mM DTPA (diethylenetriaminepenta-acetic acid) and 50 mM phosphate buffer at a final pH of 7.4. The results showed that tempol (5-75 µM) does not inhibit hSOD1 turnover, but decreases its resulting oxidation to carbonylated and covalently dimerized forms. Tempol acted by scavenging the carbonate radical produced and by recombining with hSOD1-derived radicals. As a result, tempol was consumed nearly stoichiometrically with hSOD1 monomers. MS analyses of turned-over hSOD1 and of a related peptide oxidized by the carbonate radical indicated the formation of a relatively unstable adduct between tempol and hSOD1-Trp32•. Tempol consumption by the bicarbonate-dependent peroxidase activity of hSOD1 may be one of the reasons why high doses of tempol were required to afford protection in an ALS rat model. Overall, the results of the present study confirm that tempol can protect against protein oxidation and the ensuing consequences.


Asunto(s)
Bicarbonatos/química , Óxidos N-Cíclicos/química , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Péptidos/química , Peroxidasas/química , Superóxido Dismutasa/química , Bicarbonatos/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Pruebas de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Radicales Libres/química , Humanos , Oxidación-Reducción , Péptidos/antagonistas & inhibidores , Péptidos/metabolismo , Peroxidasas/antagonistas & inhibidores , Peroxidasas/metabolismo , Carbonilación Proteica , Multimerización de Proteína , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Marcadores de Spin , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
4.
Eur J Med Chem ; 54: 10-21, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22591648

RESUMEN

Cathepsins, also known as lysosomal cysteine peptidases, are members of the papain-like peptidase family, involved in different physiological processes. In addition, cathepsins are implicated in many pathological conditions. This report describes the synthesis and evaluation of a series of N-arylanthranilic acids, acridones, and 4-quinolinones as inhibitors of cathepsins V and L. The kinetics revealed that compounds of the classes of acridones are reversible competitive inhibitors of the target enzyme with affinities in the low micromolar range. They represent promising lead candidates for the discovery of novel competitive cathepsin inhibitors with enhanced selectivity and potency. On the other hand, 4-quinolinones were noncompetitive inhibitors and N-arylanthranilic acids were uncompetitive inhibitors.


Asunto(s)
4-Quinolonas/síntesis química , 4-Quinolonas/farmacología , Acridinas/síntesis química , Acridinas/farmacología , Catepsina L/antagonistas & inhibidores , Catepsinas/antagonistas & inhibidores , 4-Quinolonas/química , Acridinas/química , Acridonas , Cisteína Endopeptidasas , Humanos , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología
5.
Bioorg Med Chem ; 19(4): 1477-81, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21277783

RESUMEN

Cathepsin V is a lysosomal cysteine peptidase highly expressed in thymus, testis and corneal epithelium. Eleven acridone alkaloids were isolated from Swinglea glutinosa (Bl.) Merr. (Rutaceae), with eight of them being identified as potent and reversible inhibitors of cathepsin V (IC(50) values ranging from 1.2 to 3.9 µM). Detailed mechanistic characterization of the effects of these compounds on the cathepsin V-catalyzed reaction showed clear competitive inhibition with respect to substrate, with dissociation constants (K(i)) in the low micromolar range (2, K(i)=1.2 µM; 6, K(i)=1.0 µM; 7, K(i)=0.2 µM; and 11, K(i)=1.7 µM). Molecular modeling studies provided important insight into the structural basis for binding affinity and enzyme inhibition. Experimental and computational approaches, including biological evaluation, mode of action assessment and modeling studies were successfully employed in the discovery of a small series of acridone alkaloid derivatives as competitive inhibitors of catV. The most potent inhibitor (7) has a K(i) value of 200 nM.


Asunto(s)
Acridinas/química , Alcaloides/química , Alcaloides/farmacología , Catepsinas/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/farmacología , Acridonas , Cisteína Endopeptidasas , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
6.
J Comb Chem ; 12(5): 687-95, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20578711

RESUMEN

Cathepsin V is a papain-like cysteine protease. It is involved in the control of human T cells (responsible for cell immunity), and presents the largest elastolytic activity among the proteolytic enzymes. Therefore, cathepsin V is a potential molecular target for the treatment of atherosclerosis. In the present work, natural flavonoids were screened against cathepsin V, and two flavones were identified as potent inhibitors of cathepsin V. On the basis of this result, a combinatorial library of chalcones and flavones was prepared, in solution phase employing a scavenger reagent, and fully evaluated.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Chalconas/farmacología , Técnicas Químicas Combinatorias , Inhibidores de Cisteína Proteinasa/farmacología , Flavonas/síntesis química , Flavonas/farmacología , Catepsinas/metabolismo , Chalconas/síntesis química , Chalconas/química , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Flavonas/química , Humanos , Estructura Molecular , Soluciones , Estereoisomerismo , Relación Estructura-Actividad , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA