Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 125: 112097, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33965107

RESUMEN

We report the synthesis of magnetite nanoparticles (MNP) and their functionalization with glycine (MNPGly), ß-alanine (MNPAla), L-phenylalanine (MNPPhAla), D-(-)-α-phenylglycine (MNPPhGly) amino acids. The functionalized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), vibrating sample magnetometry (VSM), Mössbauer spectroscopy (MS), magnetic hyperthermia (MH), dynamic light scattering and zeta potential. The functionalized nanoparticles had isoelectric points (IEP) at pH ≃ 4.4, 5.8, 5.9 and 6.8 for samples MNPGly, MNPAla, MNPPhGly and MNPPhAla, respectively, while pure magnetite had an IEP at pH 5.6. In the MH experiments, the samples showed specific absorption rate (SAR) of 64, 71, 74, 81 and 66 W/g for MNP, MNPGly, MNPAla, MNPPhGly, and MNPPhAla, respectively. We used a flow cytometric technique to determine the cellular magnetic nanoparticles plus amino acids content. Magnetic fractionation and characterization of Resovist® magnetic nanoparticles were performed for applications in magnetic particle imaging (MPI). We have also studied the antiproliferative and antiparasitic effects of functionalized MNPs. Overall, the data showed that the functionalized nanoparticles have great potential for using as environmental, antitumor, antiparasitic agents and clinical applications.


Asunto(s)
Antimaláricos , Nanopartículas de Magnetita , Aminoácidos , Citometría de Flujo , Humanos , Hipertermia , Espectroscopía Infrarroja por Transformada de Fourier
2.
Photodiagnosis Photodyn Ther ; 34: 102273, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33798749

RESUMEN

Antimicrobial Photodynamic Therapy (A-PDT) is a modern and non-invasive therapeutic modality. Nanostructures like the polymeric nanocapsules (NC) has proved to be a system that has enormous potential to improve current antimicrobial therapeutic practice. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ±â€¯17.3, an average polydispersity index of 0.36 ±â€¯0.01, and a negative Zeta potential average of -31.03 ±â€¯5.54 for 158 days. UV-vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24 % and 7.40 % for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.


Asunto(s)
Nanocápsulas , Fotoquimioterapia , Anfotericina B , Antifúngicos/farmacología , Candida albicans , Indoles , Isoindoles , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Polímeros , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...