Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(3)2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543786

RESUMEN

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Genómica
2.
RNA ; 30(1): 68-88, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37914398

RESUMEN

The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.


Asunto(s)
Virus de la Inmunodeficiencia Felina , Animales , Gatos , Humanos , Virus de la Inmunodeficiencia Felina/genética , Virus de la Inmunodeficiencia Felina/metabolismo , ARN Guía de Sistemas CRISPR-Cas , ARN Viral/química , Sitios de Unión , Genómica , Ensamble de Virus/genética
3.
Nucleic Acids Res ; 51(12): 6479-6494, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224537

RESUMEN

A fundamental step in the influenza A virus (IAV) replication cycle is the coordinated packaging of eight distinct genomic RNA segments (i.e. vRNAs) into a viral particle. Although this process is thought to be controlled by specific vRNA-vRNA interactions between the genome segments, few functional interactions have been validated. Recently, a large number of potentially functional vRNA-vRNA interactions have been detected in purified virions using the RNA interactome capture method SPLASH. However, their functional significance in coordinated genome packaging remains largely unclear. Here, we show by systematic mutational analysis that mutant A/SC35M (H7N7) viruses lacking several prominent SPLASH-identified vRNA-vRNA interactions involving the HA segment package the eight genome segments as efficiently as the wild-type virus. We therefore propose that the vRNA-vRNA interactions identified by SPLASH in IAV particles are not necessarily critical for the genome packaging process, leaving the underlying molecular mechanism elusive.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Empaquetamiento del Genoma Viral , Humanos , Genoma Viral , Subtipo H7N7 del Virus de la Influenza A/fisiología , Gripe Humana/virología , ARN Viral/metabolismo , Ensamble de Virus
4.
Nucleic Acids Res ; 50(16): 9023-9038, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35993811

RESUMEN

The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA-RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA-RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA-RNA interactions. We speculate that identifying such functional intersegmental RNA-RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Empaquetamiento del Genoma Viral , Ensamble de Virus/genética , Virus de la Influenza A/genética , ARN Viral/genética , Genoma Viral/genética
5.
RNA Biol ; 19(1): 191-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067194

RESUMEN

Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5' gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.


Asunto(s)
Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , ARN Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Viral/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral
6.
Viruses ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34835118

RESUMEN

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Proteínas de la Nucleocápside/inmunología , Proteasas Virales/inmunología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Ensamble de Virus
7.
Viruses ; 13(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34696322

RESUMEN

RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.


Asunto(s)
Biología Molecular/métodos , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , ARN/química , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Viral/metabolismo , Análisis de Secuencia de ARN
8.
Viruses ; 13(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925452

RESUMEN

Many recent studies highlight the fundamental importance of viruses. Besides their important role as human and animal pathogens, their beneficial, commensal or harmful functions are poorly understood. By developing and applying tailored bioinformatical tools in important virological models, the Marie Sklodowska-Curie Initiative International Training Network VIROINF will provide a better understanding of viruses and the interaction with their hosts. This will open the door to validate methods of improving viral growth, morphogenesis and development, as well as to control strategies against unwanted microorganisms. The key feature of VIROINF is its interdisciplinary nature, which brings together virologists and bioinformaticians to achieve common goals.


Asunto(s)
Biología Computacional/métodos , Interacciones Microbiota-Huesped , Programas Informáticos , Virología/métodos , Fenómenos Fisiológicos de los Virus , Animales , Humanos , Aprendizaje Automático , Interfaz Usuario-Computador
9.
Viruses ; 13(4)2021 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916704

RESUMEN

The ubiquitin-proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.


Asunto(s)
Desaminasa APOBEC-3G/antagonistas & inhibidores , VIH-1/genética , Interacciones Microbiota-Huesped , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/química , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
10.
Nucleic Acids Res ; 49(8): 4668-4688, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33836091

RESUMEN

Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.


Asunto(s)
Productos del Gen gag/metabolismo , Virus del Tumor Mamario del Ratón/metabolismo , Empalme del ARN , ARN Viral/metabolismo , Ensamble de Virus/genética , Animales , Sitios de Unión/genética , Cartilla de ADN , Dispersión Dinámica de Luz , Productos del Gen gag/genética , Genoma Viral , Virus del Tumor Mamario del Ratón/genética , Ratones , Conformación de Ácido Nucleico , Purinas , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799890

RESUMEN

Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.


Asunto(s)
VIH-1/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , VIH-1/genética , Humanos , Precursores de Proteínas/genética , ARN Viral/genética , Ensamble de Virus/genética , Replicación Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
12.
J Mol Biol ; 433(10): 166923, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33713677

RESUMEN

How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.


Asunto(s)
Productos del Gen gag/química , Guanina/química , Virus del Mono Mason-Pfizer/química , ARN Viral/química , Uracilo/química , Animales , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Ensayo de Cambio de Movilidad Electroforética , Regulación Viral de la Expresión Génica , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Guanina/metabolismo , Interacciones Huésped-Patógeno , Virus del Mono Mason-Pfizer/genética , Virus del Mono Mason-Pfizer/metabolismo , Conformación de Ácido Nucleico , Papio , Unión Proteica , Conformación Proteica , Huella de Proteína , ARN Viral/genética , ARN Viral/metabolismo , Transducción de Señal , Uracilo/metabolismo
13.
Biomedicines ; 10(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052693

RESUMEN

The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5' untranslated region (5'-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.

14.
Front Microbiol ; 11: 595410, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250884

RESUMEN

A distinguishing feature of the Mason-Pfizer monkey virus (MPMV) packaging signal RNA secondary structure is a single-stranded purine-rich sequence (ssPurines) in close vicinity to a palindromic stem loop (Pal SL) that functions as MPMV dimerization initiation site (DIS). However, unlike other retroviruses, MPMV contains a partially base-paired repeat sequence of ssPurines (bpPurines) in the adjacent region. Both purine-rich sequences have earlier been proposed to act as potentially redundant Gag binding sites to initiate the process of MPMV genomic RNA (gRNA) packaging. The objective of this study was to investigate the biological significance of ssPurines and bpPurines in MPMV gRNA packaging by systematic mutational and biochemical probing analyses. Deletion of either ssPurines or bpPurines individually had no significant effect on MPMV gRNA packaging, but it was severely compromised when both sequences were deleted simultaneously. Selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) analysis of the mutant RNAs revealed only mild effects on structure by deletion of either ssPurines or bpPurines, while the structure was dramatically affected by the two simultaneous deletions. This suggests that ssPurines and bpPurines play a redundant role in MPMV gRNA packaging, probably as Gag binding sites to facilitate gRNA capture and encapsidation. Interestingly, the deletion of bpPurines revealed an additional severe defect on RNA propagation that was independent of the presence or absence of ssPurines or the gRNA structure of the region. These findings further suggest that the bpPurines play an additional role in the early steps of MPMV replication cycle that is yet to be identified.

15.
Biophys J ; 119(2): 419-433, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32574557

RESUMEN

The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.


Asunto(s)
VIH-1 , Membrana Celular , Genómica , VIH-1/genética , Humanos , ARN Guía de Kinetoplastida , ARN Viral , Ensamble de Virus , Dedos de Zinc
16.
Virologie (Montrouge) ; 24(6): 381-418, 2020 12 01.
Artículo en Francés | MEDLINE | ID: mdl-33441290

RESUMEN

The innate immune response is nonspecific and constitutes the first line of defense against infections by pathogens, mainly by enabling their elimination by phagocytosis or apoptosis. In immune cells, this response is characterized, amongst others, by the synthesis of restriction factors, a class of proteins whose role is to inhibit viral replication. Among them, the proteins of the APOBEC3 (Apolipoprotein B mRNA-editing Enzyme Catalytic polypeptide-like 3 or A3) family are major antiviral factors that target a wide range of viruses. One of their targets is the Human Immunodeficiency Virus Type 1 (HIV-1): the deaminase activity of some A3 proteins converts a fraction of cytidines of the viral genome into uridines, impairing its expression. Nevertheless, HIV-1 counteracts A3 proteins thanks to its Vif protein, which inhibits them by hijacking several cellular mechanisms. Besides, APOBEC3 proteins help maintaining the genome integrity by inhibiting retroelements but they also contribute to carcinogenesis, as it is the case for A3A and A3B, two major factors in this process. The large range of A3 activities, combined with recent studies showing their implication in the regulation of emerging viruses (Zika, SARS-CoV-2), allow A3 and their viral partners to be considered as therapeutic areas.


Asunto(s)
Desaminasas APOBEC/fisiología , COVID-19/inmunología , Inmunidad Innata , Adulto , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Citidina Desaminasa/fisiología , Reparación del ADN , ADN Viral/metabolismo , Desaminación , Humanos , Mamíferos/metabolismo , MicroARNs/genética , Modelos Moleculares , Terapia Molecular Dirigida , Mutagénesis , Neoplasias/enzimología , Neoplasias/etiología , Neoplasias/genética , Pronóstico , Conformación Proteica , Edición de ARN , Relación Estructura-Actividad , Transcripción Genética , Proteínas Virales/metabolismo , Virosis/tratamiento farmacológico , Virosis/enzimología , Virosis/inmunología , Replicación Viral
17.
Viruses ; 11(8)2019 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357656

RESUMEN

The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.


Asunto(s)
Productos del Gen gag/genética , Virus de la Inmunodeficiencia Felina/genética , Ensamble de Virus , Animales , Gatos , Escherichia coli/genética , Expresión Génica , Productos del Gen gag/aislamiento & purificación , Genoma Viral , Células HEK293 , Humanos , ARN Viral/genética , Proteínas Recombinantes/genética
18.
RNA Biol ; 16(5): 612-625, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773097

RESUMEN

The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.


Asunto(s)
Productos del Gen gag/genética , Virus del Mono Mason-Pfizer/fisiología , ARN Viral/química , ARN Viral/genética , Regiones no Traducidas 5' , Productos del Gen gag/química , Humanos , Virus del Mono Mason-Pfizer/genética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Estabilidad del ARN , Ensamble de Virus
19.
Wiley Interdiscip Rev RNA ; 10(2): e1518, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30485688

RESUMEN

RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.


Asunto(s)
Geles , Conformación de Ácido Nucleico , ARN/química , Análisis de Secuencia de ARN/métodos
20.
Sci Rep ; 8(1): 11793, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087395

RESUMEN

MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.


Asunto(s)
Expresión Génica , Productos del Gen gag/química , Productos del Gen gag/aislamiento & purificación , Virus del Mono Mason-Pfizer/química , Productos del Gen gag/biosíntesis , Productos del Gen gag/genética , Células HEK293 , Humanos , Virus del Mono Mason-Pfizer/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA