RESUMEN
Klebsiella pneumoniae is an opportunistic pathogen mostly found in health care-associated infections but can also be associated with community-acquired infections and is in critical need of new antimicrobial agents for strains resistant to carbapenems. The prevalence of carbapenemase-encoding genes varies among studies. Multidrug-resistant K. pneumoniae strains can harbor several antimicrobial-resistant determinants and mobile genetic elements (MGEs), along with virulence genetic determinants in community settings. We aim to determine the genetic profile of a multidrug-resistant K. pneumoniae strain isolated from a patient with community-acquired UTI. We isolated a K. pneumoniae strain UABC-Str0120, from a urine sample of community-acquired urinary tract infection. Antimicrobial susceptibility tests and Whole-genome sequencing (WGS) were performed. The phylogenetic relationship was inferred by SNPs calling and filtering. UABC-Str0120 showed resistance toward ß-lactams, combinations with ß-lactamase inhibitors, and carbapenems. WGS revealed the presence of genes conferring resistance to aminoglycosides, ß-lactams, carbapenems, quinolones, sulfonamides, phosphonates, phenicols, and quaternary ammonium compounds, 77 subsystems of virulence genes were identified, and an uncommon sequence type ST5889 was also determined. The sequenced strain harbors several MGEs. The UABC-Str0120 recovered from a urine sample harbors several virulence and antimicrobial resistance determinants, which assembles an endangering combination for an immunocompromised or a seemly healthy host, given its presence in a community setting.