Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373295

RESUMEN

Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years. Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs' detection in GBM and define the genetic background of single CTCs compared to the primary GBM tumor and its recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system. CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs' genetic background with the same patient's primary and recurrent GBM tissues. We identified 210 common mutations in the primary and recurrent tumors. Among these, three somatic high-frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence of TERT promoter mutations was also investigated and C228T variation was found in parental tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate and genotype CTCs from a patient with GBM. We found common mutations but also exclusive molecular characteristics.


Asunto(s)
Glioblastoma , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Glioblastoma/genética , Glioblastoma/patología , Recurrencia Local de Neoplasia/genética , Mutación , Genotipo
2.
J Hematol Oncol ; 16(1): 33, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013641

RESUMEN

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells. Mechanistically, PARP1 Zinc Finger domain down-regulates BRAF expression at the translational level. As a consequence, it exerts a negative impact on MAPK pathway, and sensitizes melanoma cells to BRAF and MEK inhibitors, both in vitro and in vivo. In summary, our study unveils PARP1 as a negative regulator of the highly oncogenic MAPK pathway in melanoma, through the modulation of BRAF-X1 expression.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Indoles/farmacología , Sulfonamidas/farmacología , Melanoma/genética , Melanoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Poli(ADP-Ribosa) Polimerasa-1/genética
3.
J Biol Chem ; 298(9): 102353, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944584

RESUMEN

Despite recent advances in the development of BRAF kinase inhibitors (BRAFi) for BRAF-mutant melanomas, development of resistance remains a major clinical problem. In addition to genetic alterations associated with intrinsic resistance, several adaptive response mechanisms are known to be rapidly activated to allow cell survival in response to treatment, limiting efficacy. A better understanding of the mechanisms driving resistance is urgently needed to improve the success of BRAF-targeted therapies and to make therapeutic intervention more durable. In this study, we identify the mitogen-activated protein kinase (MAPK) p38 as a novel mediator of the adaptive response of melanoma cells to BRAF-targeted therapy. Our findings demonstrate that BRAFi leads to an early increase in p38 activation, which promotes phosphorylation of the transcription factor SOX2 at Ser251, enhancing SOX2 stability, nuclear localization, and transcriptional activity. Furthermore, functional studies show that SOX2 depletion increases sensitivity of melanoma cells to BRAFi, whereas overexpression of a phosphomimetic SOX2-S251E mutant is sufficient to drive resistance and desensitize melanoma cells to BRAFi in vitro and in a zebrafish xenograft model. We also found that SOX2 phosphorylation at Ser251 confers resistance to BRAFi by binding to the promoter and increasing transcriptional activation of the ATP-binding cassette drug efflux transporter ABCG2. In summary, we unveil a p38/SOX2-mediated mechanism of adaptive response to BRAFi, which provides prosurvival signals to melanoma cells against the cytotoxic effects of BRAFi prior to acquiring resistance.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Pez Cebra/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35805774

RESUMEN

Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated.


Asunto(s)
Arsénico , Arsenitos , Arseniatos/toxicidad , Arsénico/toxicidad , Arsenitos/toxicidad , Hibridación Genómica Comparativa , Operón , Saccharomyces cerevisiae/genética
5.
Stem Cell Reports ; 16(6): 1496-1509, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019815

RESUMEN

Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3'UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.


Asunto(s)
Corteza Cerebral/metabolismo , Euterios/genética , Euterios/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regiones no Traducidas 3' , Animales , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Neurogénesis
6.
Methods Mol Biol ; 2265: 487-512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704736

RESUMEN

MicroRNAs (miRNAs) can regulate the expression of potentially every transcript in the cell, and the definition of miRNA-target interactions is crucial to understand their role in all biological processes. However, the identification of the miRNAs that target a specific mRNA remains a challenge. Here, we describe an innovative method called miR-CATCHv2.0 for the high-throughput identification of the miRNA species bound to an RNA of interest. We also describe how this method can overcome the limitations of the current computational and experimental methods available in this field.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma , MicroARNs , ARN Mensajero , Línea Celular Tumoral , Humanos , Melanoma/genética , Melanoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
RNA Biol ; 16(7): 865-878, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30929607

RESUMEN

Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.


Asunto(s)
MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Programas Informáticos , Humanos , MicroARNs/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
8.
Pharmacogenomics J ; 19(5): 455-464, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30686821

RESUMEN

Biomarkers able to improve the cost/benefit ratio are urgently needed for metastatic colorectal cancer patients that are eligible to receive regorafenib. Here, we measured plasma levels of ten circulating microRNAs (c-miRNAs) and we investigated their early changes during treatment, as well as possible correlation with clinical outcome. Ten literature-selected c-miRNAs were quantified by qRT-PCR on plasma samples collected at baseline (d1) and after 15 days of treatment (d15). C-miRNAs showing significant changes were further analyzed to establish correlations with outcome. A decision tree-based approach was employed to define a c-miRNA signature able to predict the outcome. Results achieved in an exploratory cohort were tested in a validation group. In the exploratory cohort (n = 34), the levels of c-miR-21 (p = 0.06), c-miR-141 (p = 0.04), and c-miR-601 (p = 0.01) increased at d15 compared with d1. A c-miRNA signature involving c-miR-21, c-miR-221, and c-miR-760 predicted response to treatment (p < 0.0001) and was significantly associated to PFS (HR = 10.68; 95% CI 3.2-35.65; p < 0.0001). In the validation cohort (n = 36), the increase in c-miR-21 (p = 0.02) and c-miR-601 (p = 0.02) levels at d15 was confirmed, but the associations with outcome were not. Our data indicate that early changes of c-miRNA levels might be influenced by regorafenib treatment. However, further studies are needed to establish the predictive power of such modifications.


Asunto(s)
MicroARN Circulante/sangre , Neoplasias Colorrectales/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Piridinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Metástasis de la Neoplasia
9.
Oncogene ; 38(19): 3756-3762, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664692

RESUMEN

Attenuated Listeria monocytogenes (Lmat-LLO) represents a valuable anticancer vaccine and drug delivery platform. Here we show that in vitro Lmat-LLO causes ROS production and, in turn, apoptotic killing of a wide variety of melanoma cells, irrespectively of their stage, mutational status, sensitivity to BRAF inhibitors or degree of stemness. We also show that, when administered in the therapeutic setting to Braf/Pten genetically engineered mice, Lmat-LLO causes a strong decrease in the size and volume of primary melanoma tumors, as well as a reduction of the metastatic burden. At the molecular level, we confirm that the anti-melanoma activity exerted in vivo by Lmat-LLO depends also on its ability to potentiate the immune response of the organism against the infected tumor. Our data pave the way to the preclinical testing of listeria-based immunotherapeutic strategies against metastatic melanoma, using a genetically engineered mouse rather than xenograft models.


Asunto(s)
Vacunas contra el Cáncer/farmacología , Listeria monocytogenes/inmunología , Melanoma Experimental/tratamiento farmacológico , Animales , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones Transgénicos , Vacunas Atenuadas/farmacología
10.
Oncogene ; 38(8): 1355-1366, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237439

RESUMEN

BRAFV600E is a mutant Ser-Thr protein kinase that plays a crucial role in many types of cancer, including melanoma. Despite several aspects of BRAFV600E biology have been already elucidated, the proteins that regulate its expression and activity remain largely unknown, hampering our capacity to control its unrestrained effects. Here, we propose yeast Saccharomyces cerevisiae as a model system that can be used to achieve a better understanding of the regulation of human BRAFV600E.By showing that in osmotic stress conditions hBRAFV600E can rescue the growth of strains carrying a double or triple deletion in MAPKKK belonging to the HOG pathway, we demonstrate that this oncogenic kinase is active in yeast even if it does not have an ortholog. Moreover, we report that, in the yeast ptp3∆ptc1∆ strain that is deleted in the genes encoding for two phosphatases responsible for Hog1 de-phoshorylation, hBRAFV600E mimics the toxicity observed in the presence of constitutive Hog1 activation. Finally, we exploit such a toxicity to perform a functional screening of a human cDNA library, looking for cDNAs able to rescue yeast growth. In this way, we identify SMIM10, a mitochondrial protein that in melanoma cells selectively downregulates BRAFV600E RNA and protein levels, by acting indirectly at the post-transcriptional level. Upon SMIM10 overexpression, BRAFV600E melanoma cells show disrupted mitochondrial structure/function and undergo senescence. They also show decreased ability to proliferate and form colonies, as well as increased sensitivity to the BRAF inhibitor vemurafenib. Interestingly, the analysis of TCGA melanoma samples indicates that patients with higher SMIM10 levels have a better prognosis. Therefore, these data suggest that SMIM10 exerts an oncosuppressive role in melanoma cells.Taken together, our results unveil the potential of S. cerevisiae to study hBRAFV600E, to populate the network of its functional interactors and, in doing so, to uncover new cancer-associated genes with therapeutic potential.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Línea Celular Tumoral , Biblioteca de Genes , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Saccharomyces cerevisiae/genética
11.
Mol Cancer ; 16(1): 85, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28454577

RESUMEN

BACKGROUND: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. RESULTS: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. CONCLUSIONS: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies.


Asunto(s)
Melanoma/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Empalme Alternativo/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Exones/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Indoles/administración & dosificación , Melanoma/tratamiento farmacológico , Melanoma/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , ARN Mensajero/genética , Sulfonamidas/administración & dosificación , Vemurafenib
12.
Oncotarget ; 8(15): 25395-25417, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28445987

RESUMEN

Despite increasing amounts of experimental evidence depicting the involvement of non-coding RNAs in cancer, the study of BRAFV600E-regulated genes has thus far focused mainly on protein-coding ones. Here, we identify and study the microRNAs that BRAFV600E regulates through the ERK pathway.By performing small RNA sequencing on A375 melanoma cells and a vemurafenib-resistant clone that was taken as negative control, we discover miR-204 and miR-211 as the miRNAs most induced by vemurafenib. We also demonstrate that, although belonging to the same family, these two miRNAs have distinctive features. miR-204 is under the control of STAT3 and its expression is induced in amelanotic melanoma cells, where it acts as an effector of vemurafenib's anti-motility activity by targeting AP1S2. Conversely, miR-211, a known transcriptional target of MITF, is induced in melanotic melanoma cells, where it targets EDEM1 and consequently impairs the degradation of TYROSINASE (TYR) through the ER-associated degradation (ERAD) pathway. In doing so, miR-211 serves as an effector of vemurafenib's pro-pigmentation activity. We also show that such an increase in pigmentation in turn represents an adaptive response that needs to be overcome using appropriate inhibitors in order to increase the efficacy of vemurafenib.In summary, we unveil the distinct and context-dependent activities exerted by miR-204 family members in melanoma cells. Our work challenges the widely accepted "same miRNA family = same function" rule and provides a rationale for a novel treatment strategy for melanotic melanomas that is based on the combination of ERK pathway inhibitors with pigmentation inhibitors.


Asunto(s)
Melanoma Amelanótico/genética , Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas , Melanoma/metabolismo , Melanoma/patología , Melanoma Amelanótico/tratamiento farmacológico , Melanoma Amelanótico/metabolismo , Melanoma Amelanótico/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfonamidas/farmacología , Transfección , Vemurafenib
13.
Methods Mol Biol ; 1388: 111-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27033074

RESUMEN

The identification of PTEN-targeting microRNAs usually starts from an in silico bioinformatic prediction and then requires a careful experimental validation that exploits both heterologous and endogenous systems. Here we describe the methods used to carry on these analyses and experiments, examining pitfalls and alternatives for each step. Moreover, we give an overview of the latest high-throughput microRNA target identification techniques which offer a more comprehensive view of the microRNAs that can bind a fundamental tumor suppressor such as PTEN.


Asunto(s)
Algoritmos , Simulación por Computador , Técnicas Genéticas , MicroARNs/análisis , Fosfohidrolasa PTEN/genética , Regiones no Traducidas 3' , Regulación de la Expresión Génica , Células HCT116 , Humanos , MicroARNs/genética , Mutagénesis , Fosfohidrolasa PTEN/análisis , Procesamiento Postranscripcional del ARN
14.
Front Med (Lausanne) ; 2: 68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442270

RESUMEN

Recent advances in the analysis of RNA sequencing data have shown that pseudogenes are highly specific markers of cell identity and can be used as diagnostic and prognostic markers. Furthermore, genetically engineered mouse models have recently provided compelling support for a causal link between altered pseudogene expression and cancer. In this review, we discuss the most recent milestones reached in the pseudogene field and the use of pseudogenes as cancer classifiers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...