Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 188: 114553, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36701976

RESUMEN

During the last two decades, the number of tropical cyclone (TC) events in the Arabian Sea has increased dramatically. These events have led to severe human and economic damage in Oman, Iran and Pakistan. Within this context, Gonu, Phet and Shaheen were the Arabian Sea's most destructive TCs on record, leading to a total of 6.07 billion USD in damages and 159 fatalities. Previous studies have mainly focused on atmospheric, sea surface temperature (SST) and anthropogenic impacts of TC generation and intensification. By contrast, oceanographic currents, Persian Gulf water outflow and the role of ocean-atmospheric interactions on the distribution of outflow water into the Arabian Sea and their impacts on TC intensification, are poorly understood. In order to address this issue, we use historical TC records, satellite data, atmospheric and reanalyzed oceanographic data to shed new light on the relationship between large-scale atmospheric forcing and ocean currents on TC intensification in the Arabian Sea. The results demonstrate that pre-monsoon TCs mainly occurred during co-existing La Niña, cold Indian Ocean Basin Model (IOBM) and anomalous northern hemisphere circulations over the Persian Gulf. By contrast, post-monsoon TCs were generally generated during warming acceleration period. Poleward movement of the monsoon belt provided the required humidity and energy for TC generation and increased upwelling events. Water salinity and temperature have increased in the north and northwestern parts of the Arabian Sea following rising upwelling events and a decrease in Persian Gulf outflow water depth. Rapid TC intensification has increased noticeably since 2007 and >72 % of cyclones have reached category 3 or more. We find that the rate of SST rise in the Arabian Sea is higher than the other parts of the northern Indian Ocean since 1998. SST and salinity in the Arabian Sea have been controlled by Persian Gulf outflow water and oceanographic currents. TC intensity is controlled by warm and saline (>36.6 PSU) water distribution patterns, mediated by eddy and jet currents. Rapid intensification of pre-monsoon TCs occurred by tracking to the north and northwest, with most landfalls occurring during this period. Post-monsoon TCs generally affect the center and the southwest of the Arabian Sea. The risk of intensive TCs manifests an increasing trend since 2007, therefore education programs via international platforms such as the International Ocean Institute (IOI) and UNESCO are required for the countries most at risk.


Asunto(s)
Tormentas Ciclónicas , Humanos , Océano Índico , Agua , Temperatura , Atmósfera
2.
Nat Plants ; 9(2): 219-227, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702932

RESUMEN

The olive tree (Olea europaea L.) is one of the species best adapted to a Mediterranean-type climate1-8. Nonetheless, the Mediterranean Basin is deemed to be a climate change 'hotspot' by the Intergovernmental Panel on Climate Change9,10 because future model projections suggest considerable warming and drying11,12. Within this context, new environmental challenges will arise in the coming decades, which will both weaken and threaten olive-growing areas, leading to a loss of productivity and changes in fruit and oil quality13-15. Olive growing, a core of the Mediterranean economy, might soon be under stress. To probe the link between climate and olive trees, we here report 5,400 years of olive tree dynamics from the ancient city of Tyre, Lebanon. We show that optimal fruiting scales closely with temperature. Present-day and palaeo data define an optimal annual average temperature of 16.9 ± 0.3 °C for olive flowering that has existed at least since the Neolithic period. According to our projections, during the second half of the twenty-first century, temperature increases in Lebanon will have detrimental consequences on olive tree growth and olive oil production, especially in the country's southern regions, which will become too hot for optimal flowering and fruiting. These data provide a template to understand present and future thresholds of olive production under climate change.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Aceite de Oliva , Temperatura
3.
Proc Natl Acad Sci U S A ; 119(37): e2202530119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36037388

RESUMEN

The pyramids of Giza originally overlooked a now defunct arm of the Nile. This fluvial channel, the Khufu branch, enabled navigation to the Pyramid Harbor complex but its precise environmental history is unclear. To fill this knowledge gap, we use pollen-derived vegetation patterns to reconstruct 8,000 y of fluvial variations on the Giza floodplain. After a high-stand level concomitant with the African Humid Period, our results show that Giza's waterscapes responded to a gradual insolation-driven aridification of East Africa, with the lowest Nile levels recorded at the end of the Dynastic Period. The Khufu branch remained at a high-water level (∼40% of its Holocene maximum) during the reigns of Khufu, Khafre, and Menkaure, facilitating the transportation of construction materials to the Giza Pyramid Complex.


Asunto(s)
Industria de la Construcción , Ríos , Industria de la Construcción/historia , Egipto , Historia Antigua
4.
Nat Commun ; 12(1): 4013, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188029

RESUMEN

Future warming in the Mediterranean is expected to significantly exceed global values with unpredictable implications on the sea-level rise rates in the coming decades. Here, we apply an empirical-Bayesian spatio-temporal statistical model to a dataset of 401 sea-level index points from the central and western Mediterranean and reconstruct rates of sea-level change for the past 10,000 years. We demonstrate that the mean rates of Mediterranean industrial-era sea-level rise have been significantly faster than any other period since ~4000 years ago. We further highlight a previously unrecognized variability in Mediterranean sea-level change rates. In the Common Era, this variability correlates with the occurrence of major regional-scale cooling/warming episodes. Our data show a sea-level stabilization during the Late Antique Little Ice Age cold event, which interrupted a general rising trend of ~0.45 mm a-1 that characterized the warming episodes of the Common Era. By contrast, the Little Ice Age cold event had only minor regional effects on Mediterranean sea-level change rates.

5.
Heliyon ; 7(2): e06288, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33681498

RESUMEN

Ongoing global change and its direct environmental impacts, in addition to securing economic transition to the post-oil era, could trigger complex socio-economic and political crises in oil-dependent economies of the Persian Gulf Region (PGR). To evaluate the role of climate change and related policies in degrading the environment and its socio-economic impacts in the PGR, we have used a variety of available global datasets and published data. The results show that the countries of the PGR pursue some types of socio-economic reforms to alleviate the impacts of climate change. However, it seems that these attempts are not compatible with the environment's capacity. The main problem stems from the fact that political differences between the PGR nations prevent them from managing the Persian Gulf environment as an integrated natural system and consequently they have to limit their efforts within their borders, regardless of what happens in other parts of the system. The shift to alternative revenue sources by the countries needs socioeconomic preparedness while there are environmental obstacles, political tensions and geopolitical rivalries. Unless there is a cooperative approach to mitigate the effects of climate change, accompanied by a reorientation of PGR economies, the situation is likely to worsen rather than improve. To address the challenges of climate change, integrated regional collaborations are needed. Collective action, such as more investment in regional research and development and education, is required if the PGR is to successfully transition from a commodity-based to a knowledge-based economy.

6.
Sci Adv ; 3(11): e1700954, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29181444

RESUMEN

Global climate change has sharpened focus on the social and economic challenges associated with water deficits, particularly in regions where anthropogenic demands exceed supply. This modern condition was also experienced by the people of ancient western Asia, where chronic water shortages were accentuated by recurrent droughts. However, human societies may react to climate change, particularly desiccation, in different ways depending on specific local conditions. Focusing on the biblical site of Tel Dan (present-day Israel), we show the effects of severe precipitation decline in an environment that was well watered and fertile even in times of drought. Such local niches of prosperity became attractive targets for predation when food resources became scarce in surrounding rain-fed areas. We propose that predation forced urban populations to either flee or adopt new subsistence strategies. Predation and abandonment, even if only partial, led to the poor maintenance of water networks in and around the city. Once stagnant water surrounded the area, water-borne disease proliferated. Our study shows how climate changes can disrupt social and political structures, cause water system management to collapse, and facilitate marshland expansion.

7.
Sci Adv ; 3(10): e1700485, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29026879

RESUMEN

From 2000 to 2015, tsunamis and storms killed more than 430,000 people worldwide and affected a further >530 million, with total damages exceeding US$970 billion. These alarming trends, underscored by the tragic events of the 2004 Indian Ocean catastrophe, have fueled increased worldwide demands for assessments of past, present, and future coastal risks. Nonetheless, despite its importance for hazard mitigation, discriminating between storm and tsunami deposits in the geological record is one of the most challenging and hotly contended topics in coastal geoscience. To probe this knowledge gap, we present a 4500-year reconstruction of "tsunami" variability from the Mediterranean based on stratigraphic but not historical archives and assess it in relation to climate records and reconstructions of storminess. We elucidate evidence for previously unrecognized "tsunami megacycles" with three peaks centered on the Little Ice Age, 1600, and 3100 cal. yr B.P. (calibrated years before present). These ~1500-year cycles, strongly correlated with climate deterioration in the Mediterranean/North Atlantic, challenge up to 90% of the original tsunami attributions and suggest, by contrast, that most events are better ascribed to periods of heightened storminess. This timely and provocative finding is crucial in providing appropriately tailored assessments of coastal hazard risk in the Mediterranean and beyond.

8.
Sci Rep ; 6: 25197, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126207

RESUMEN

Storm surges, leading to catastrophic coastal flooding, are amongst the most feared natural hazards due to the high population densities and economic importance of littoral areas. Using the Central Mediterranean Sea as a model system, we provide strong evidence for enhanced periods of storminess leading to coastal flooding during the last 4500 years. We show that long-term correlations can be drawn between storminess and solar activity, acting on cycles of around 2200-yr and 230-yr. We also find that phases of increased storms and coastal flooding have impacted upon mid- to late Holocene agricultural activity on the Adriatic coast. Based on the general trend observed during the second half of the 20(th) century, climate models are predicting a weakening of Mediterranean storminess. By contrast, our new data suggest that a decrease in solar activity will increase and intensify the risk of frequent flooding in coastal areas.

9.
Sci Rep ; 4: 5554, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24989979

RESUMEN

Beirut, Sidon and Tyre were major centres of maritime trade from the Bronze Age onwards. This economic prosperity generated increased pressures on the local environment, through urbanization and harbour development. Until now, however, the impact of expanding seaport infrastructure has largely been neglected and there is a paucity of data concerning the environmental stresses caused by these new forms of anthropogenic impacts. Sediment archives from Beirut, Sidon and Tyre are key to understanding human impacts in harbour areas because: (i) they lie at the heart of ancient trade networks; (ii) they encompass the emergence of early maritime infrastructure; and (iii) they enable human alterations of coastal areas to be characterized over long timescales. Here we report multivariate analyses of litho- and biostratigraphic data to probe human stressors in the context of their evolving seaport technologies. The statistical outcomes show a notable break between natural and artificial sedimentation that began during the Iron Age. Three anchorage phases can be distinguished: (i) Bronze Age proto-harbours that correspond to natural anchorages, with minor human impacts; (ii) semi-artificial Iron Age harbours, with stratigraphic evidence for artificial reinforcement of the natural endowments; and (iii) heavy human impacts leading to completely artificial Roman and Byzantine harbours.


Asunto(s)
Urbanización/historia , Comercio/historia , Sedimentos Geológicos , Historia Antigua , Actividades Humanas , Humanos , Líbano , Mar Mediterráneo
10.
PLoS One ; 8(7): e69195, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922692

RESUMEN

Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important challenge for the earth sciences in characterizing the full range of present and future wetland responses to global warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in Nile Delta accretion rates is consistent with insolation-driven changes in the 'monsoon pacemaker', attested throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile's deltaic plain, sediment losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the Saharan 'depeopling', reduced river flow underpinned by a weakening of monsoonal precipitation appears to have been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history of vulnerability to extreme events (e.g. floods and storms) and sea-level rise, although the present sediment-starved system does not have a direct Holocene analogue. This study highlights the importance of the world's deltas as sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal interaction.


Asunto(s)
Cambio Climático , Ríos , Egipto , Geografía , Sedimentos Geológicos , Humanos , Agua de Mar , Factores de Tiempo , Movimientos del Agua
11.
Proc Natl Acad Sci U S A ; 104(22): 9218-23, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17517668

RESUMEN

In 332 B.C., Alexander the Great constructed an approximately 1,000-m-long causeway to seize the offshore island of Tyre. The logistics behind this engineering feat have long troubled archaeologists. Using the Holocene sedimentary record, we demonstrate that Alexander's engineers cleverly exploited a shallow proto-tombolo, or sublittoral sand spit, to breach the offshore city's defensive impregnability. We elucidate a three-phase geomorphological model for the spit's evolution. Settled since the Bronze Age, the area's geological record manifests a long history of natural and anthropogenic forcings. (i) Leeward of the island breakwater, the maximum flooding surface (e.g., drowning of the subaerial land surfaces by seawater) is dated approximately 8000 B.P. Fine-grained sediments and brackish and marine-lagoonal faunas translate shallow, low-energy water bodies at this time. Shelter was afforded by Tyre's elongated sandstone reefs, which acted as a 6-km natural breakwater. (ii) By 6000 B.P., sea-level rise had reduced the dimensions of the island from 6 to 4 km. The leeward wave shadow generated by this island, allied with high sediment supply after 3000 B.P., culminated in a natural wave-dominated proto-tombolo within 1-2 m of mean sea level by the time of Alexander the Great (4th century B.C.). (iii) After 332 B.C., construction of Alexander's causeway entrained a complete anthropogenic metamorphosis of the Tyrian coastal system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...