Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 11(7): 1775-1786, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38775181

RESUMEN

OBJECTIVE: Neurofilament heavy-chain gene (NEFH) variants are associated with multiple neurodegenerative diseases, however, their relationship with ALS has not been robustly explored. Still, NEFH is commonly included in genetic screening panels worldwide. We therefore aimed to determine if NEFH variants modify ALS risk. METHODS: Genetic data of 11,130 people with ALS and 7,416 controls from the literature and Project MinE were analysed. We performed meta-analyses of published case-control studies reporting NEFH variants, and variant analysis of NEFH in Project MinE whole-genome sequencing data. RESULTS: Fixed-effects meta-analysis found that rare (MAF <1%) missense variants in the tail domain of NEFH increase ALS risk (OR 4.55, 95% CI 2.13-9.71, p < 0.0001). In Project MinE, ultrarare NEFH variants increased ALS risk (OR 1.37 95% CI 1.14-1.63, p = 0.0007), with rod domain variants (mostly intronic) appearing to drive the association (OR 1.45 95% CI 1.18-1.77, pMadsen-Browning = 0.0007, pSKAT-O = 0.003). While in the tail domain, ultrarare (MAF <0.1%) pathogenic missense variants were also associated with higher risk of ALS (OR 1.94, 95% CI 0.86-4.37, pMadsen-Browning = 0.039), supporting the meta-analysis results. Finally, several tail in-frame deletions were also found to affect disease risk, however, both protective and pathogenic deletions were found in this domain, highlighting an intricate architecture that requires further investigation. INTERPRETATION: We showed that NEFH tail missense and in-frame deletion variants, and intronic rod variants are risk factors for ALS. However, they are not variants of large effect, and their functional impact needs to be clarified in further studies. Therefore, their inclusion in routine genetic screening panels should be reconsidered.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Neurofilamentos , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Predisposición Genética a la Enfermedad/genética , Mutación , Mutación Missense , Proteínas de Neurofilamentos/genética , Dominios Proteicos/genética
2.
Acta Neuropathol Commun ; 11(1): 208, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129934

RESUMEN

Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Humanos , Esclerosis Amiotrófica Lateral/patología , Aprendizaje Automático no Supervisado , Corteza Motora/metabolismo , Encéfalo/patología , Autopsia
3.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010501

RESUMEN

SUMMARY: The current widespread adoption of next-generation sequencing (NGS) in all branches of basic research and clinical genetics fields means that users with highly variable informatics skills, computing facilities and application purposes need to process, analyse, and interpret NGS data. In this landscape, versatility, scalability, and user-friendliness are key characteristics for an NGS analysis software. We developed DNAscan2, a highly flexible, end-to-end pipeline for the analysis of NGS data, which (i) can be used for the detection of multiple variant types, including SNVs, small indels, transposable elements, short tandem repeats, and other large structural variants; (ii) covers all standard steps of NGS analysis, from quality control of raw data and genome alignment to variant calling, annotation, and generation of reports for the interpretation and prioritization of results; (iii) is highly adaptable as it can be deployed and run via either a graphic user interface for non-bioinformaticians and a command line tool for personal computer usage; (iv) is scalable as it can be executed in parallel as a Snakemake workflow, and; (v) is computationally efficient by minimizing RAM and CPU time requirements. AVAILABILITY AND IMPLEMENTATION: DNAscan2 is implemented in Python3 and is available at https://github.com/KHP-Informatics/DNAscanv2.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación INDEL , Control de Calidad , Flujo de Trabajo
4.
Artículo en Inglés | MEDLINE | ID: mdl-36896705

RESUMEN

Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Mutación , Pruebas Genéticas/métodos , Proteína C9orf72/genética
5.
iScience ; 25(11): 105289, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36339261

RESUMEN

Human endogenous retroviruses (HERVs) integrated into the human genome as a result of ancient exogenous infections and currently comprise ∼8% of our genome. The members of the most recently acquired HERV family, HERV-Ks, still retain the potential to produce viral molecules and have been linked to a wide range of diseases including cancer and neurodegeneration. Although a range of tools for HERV detection in NGS data exist, most of them lack wet lab validation and they do not cover all steps of the analysis. Here, we describe RetroSnake, an end-to-end, modular, computationally efficient, and customizable pipeline for the discovery of HERVs in short-read NGS data. RetroSnake is based on an extensively wet-lab validated protocol, it covers all steps of the analysis from raw data to the generation of annotated results presented as an interactive html file, and it is easy to use by life scientists without substantial computational training. Availability and implementation: The Pipeline and an extensive documentation are available on GitHub.

6.
Emot Space Soc ; 40: 100824, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35721520

RESUMEN

The COVID-19 crisis in Australia led to a rapid increase in the use of telehealth services to offer psychological therapy (often referred to as 'telepsychology'). In this article, we discuss the intersection of the social psychology concepts of therapeutic holding spaces and containment with more-than-human theory as it relates to Australia's mental health sector during the COVID-19 crisis. Drawing on our recent qualitative survey research into Australian psychologists' use of telepsychology during the crisis, we consider the ways that they worked to build and maintain therapeutic holding spaces and alliances over teleconferencing platforms during this extraordinary time of social crisis and isolation. We explore and contextualise three important findings from our study: 1) the limited viewing area of a flat screen makes it difficult for therapists to read and respond to their client's body language and requires different forms of returned bodily gestures in order to show empathy; 2) most respondents implemented different affective and relational strategies online to ensure they were not missing important non-verbal cues from their clients; and 3) the traditionally 'safe' therapeutic holding space created in face-to-face therapy can be easily subverted by client-end interruptions, and concerns around safety or personal privacy in the client's home environment. In bringing these issues to the fore, we highlight the online therapeutic holding space as a temporally and socially situated human-technological assemblage in which a series of affective, spatial, relational and sense-making agencies coverage, opening or closing off capacities for therapists and their clients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...