Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 27(5): 1461-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25944099

RESUMEN

A key step of the cell cycle is the entry into the DNA replication phase that typically commits cells to divide. However, little is known about the molecular mechanisms regulating this transition in plants. Here, we investigated the function of FBL17 (F BOX-LIKE17), an Arabidopsis thaliana F-box protein previously shown to govern the progression through the second mitosis during pollen development. Our work reveals that FBL17 function is not restricted to gametogenesis. FBL17 transcripts accumulate in both proliferating and postmitotic cell types of Arabidopsis plants. Loss of FBL17 function drastically reduces plant growth by altering cell division activity in both shoot and root apical meristems. In fbl17 mutant plants, DNA replication is severely impaired and endoreplication is fully suppressed. At the molecular level, lack of FBL17 increases the stability of the CDK (CYCLIN-DEPENDENT KINASE) inhibitor KIP-RELATED PROTEIN2 known to switch off CDKA;1 kinase activity. Despite the strong inhibition of cell proliferation in fbl17, some cells are still able to enter S phase and eventually to divide, but they exhibit a strong DNA damage response and often missegregate chromosomes. Altogether, these data indicate that the F-box protein FBL17 acts as a master cell cycle regulator during the diploid sporophyte phase of the plant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciación Celular , Endorreduplicación , Proteínas F-Box/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , División Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Replicación del ADN , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Mitosis , Mutación , Fase S
2.
J Exp Bot ; 65(10): 2603-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24353246

RESUMEN

Plant growth control has become a major focus due to economic reasons and results from a balance of cell proliferation in meristems and cell elongation that occurs during differentiation. Research on plant cell proliferation over the last two decades has revealed that the basic cell-cycle machinery is conserved between human and plants, although specificities exist. While many regulatory circuits control each step of the cell cycle, the ubiquitin proteasome system (UPS) appears in fungi and metazoans as a major player. In particular, the UPS promotes irreversible proteolysis of a set of regulatory proteins absolutely required for cell-cycle phase transitions. Not unexpectedly, work over the last decade has brought the UPS to the forefront of plant cell-cycle research. In this review, we will summarize our knowledge of the function of the UPS in the mitotic cycle and in endoreduplication, and also in meiosis in higher plants.


Asunto(s)
Ciclo Celular , Proteínas de Plantas/metabolismo , Desarrollo de la Planta , Proteolisis
3.
PLoS One ; 7(4): e35173, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545099

RESUMEN

BACKGROUND: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed. CONCLUSIONS/SIGNIFICANCE: Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Interferencia de ARN , ARN de Planta/genética , Proteínas de Unión al ARN/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
4.
Curr Opin Plant Biol ; 13(6): 631-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20810305

RESUMEN

Ubiquitin-mediated proteolysis is one of the key mechanisms underlying cell cycle control in all eukaryotes. This is achieved by the action of ubiquitin ligases (E3s), which remove both negative and positive regulators of the cell cycle. Though our current understanding of the plant cell cycle has improved a lot these recent years, the identity of the E3s regulating it and their mode of action is still in its infancy. Nevertheless, recent research in Arabidopsis revealed some novel findings in this area. Thus the anaphase promoting complex/cyclosome (APC/C) not only controls mitotic events, but is also important in post-mitotic cells for normal plant development and cell differentiation. Moreover conserved and novel E3s were identified that target cyclin-dependent kinase inhibitors at different plant developmental stages. Finally, environmental constrains and stress hormones negatively impact on the cell cycle by processes that also include E3s.


Asunto(s)
Ciclo Celular/fisiología , Células Vegetales , Plantas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular/genética , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Development ; 136(9): 1475-85, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19336465

RESUMEN

Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all eukaryotes. In particular, the APC/C (anaphase promoting complex or cyclosome) is a master ubiquitin protein ligase (E3) that targets PDS1/SECURIN and cyclin B for degradation allowing sister chromatid separation and exit from mitosis, respectively. Interestingly, it has been found that the APC/C remains active in differentiated neurons in which the E3 ligase regulates axon growth, neuronal survival and synaptic functions. However, despite these recent findings, the role of APC/C in differentiated cells and the regulation of its activity beyond cell division is still poorly understood. Here, we investigate the activity and function of APC/C in the model plant Arabidopsis thaliana. We used cyclin reporter constructs to follow APC/C activity during plant development and found that this E3 ligase remains active in most post-mitotic plant cells. Strikingly, hypomorphic mutant lines, in which the APC/C activity is reduced, exhibited several developmental abnormalities, including defects in cotyledon vein patterning and internode elongation leading to a characteristic broomhead-like phenotype. Histological analyses revealed an increased amount of vascular tissue, most notably xylem and lignified sclerenchyma, indicating a role for APC/C in plant vasculature development and organization.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Mitosis , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/citología , Diferenciación Celular , Ciclinas/genética , Ciclinas/metabolismo , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Mutación/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas/genética
6.
Curr Biol ; 17(18): 1615-21, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17869109

RESUMEN

Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas F-Box/metabolismo , Luteoviridae/fisiología , Interferencia de ARN , Proteínas Virales/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Modelos Biológicos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/fisiología
7.
Gene ; 392(1-2): 106-16, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17240087

RESUMEN

In eukaryotes, E3 ubiquitin ligases (E3s) mediate the ubiquitylation of proteins that are destined for degradation by the ubiquitin-proteasome system. In SKP1/CDC53/F-box protein (SCF)-type E3 complexes, the interchangeable F-box protein confers specificity to the E3 ligase through direct physical interactions with the degradation substrate. The vast majority of the approximately 700 F-box proteins from the plant model organism Arabidopsis thaliana remain to be characterized. Here, we investigate the previously uncharacterized and evolutionarily conserved Arabidopsis F-box protein 7 (AtFBP7), which is encoded by a unique gene in Arabidopsis (At1g21760). Several apparent fbp7 loss-of-function alleles do not have an obvious phenotype. AtFBP7 is ubiquitously expressed and its expression is induced after cold and heat stress. When following up on a reported co-purification of the eukaryotic elongation factor-2 (eEF-2) with YLR097c, the apparent budding yeast orthologue of AtFBP7, we discovered a general defect in protein biosynthesis after cold and heat stress in fbp7 mutants. Thus, our findings suggest that AtFBP7 is required for protein synthesis during temperature stress.


Asunto(s)
Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/fisiología , Biosíntesis de Proteínas , Temperatura , Adaptación Biológica/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Secuencia Conservada , Evolución Molecular , Proteínas F-Box/metabolismo , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Distribución Tisular
8.
Proc Natl Acad Sci U S A ; 103(6): 1994-9, 2006 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-16446454

RESUMEN

Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0-SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery.


Asunto(s)
Secuencias F-Box , Silenciador del Gen , Virus de Plantas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación/genética , Virus de Plantas/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virales/genética
9.
Plant J ; 45(3): 423-38, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16412087

RESUMEN

Empfindlicher im Dunkelroten Licht 1 (EID1) is an F-box protein that functions as a negative regulator in phytochrome A (phyA)-specific light signalling. F-box proteins are components of SCF ubiquitin ligase complexes that target proteins for degradation in the proteasome. Here we present further characterization of EID1 at the expression level, and show that it regulates photomorphogenesis in seedlings, rosette leaf development and flowering. Data on transcript expression patterns indicate that EID1 is expressed during all stages of Arabidopsis development and exhibits no light response. Microscope studies demonstrate that EID1 is localized to the nucleus, where it can form speckles under continuous far-red light that resemble clastosomes. To characterize the composition and formation of SCF(EID1) complexes further, we used two-hybrid and bridge assays in yeast and in planta. EID1 interacts specifically with several Arabidopsis Skp1-like (ASK) proteins and Cullin1 to form stable dimeric and trimeric complexes. Our results support a two-step association process in which the F-box protein binds first to the ASK adaptor, forming a unit which then associates with the catalytic core of the SCF complex. Finally, our data indicate that the EID1 target interaction domain is composed of two independent modules.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Proteínas F-Box/fisiología , Luz , Proteínas Nucleares/fisiología , Fitocromo A/metabolismo , Transducción de Señal , Alelos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/metabolismo , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
10.
Plant J ; 40(5): 686-98, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15546352

RESUMEN

Root hairs are a major site for the uptake of water and nutrients into plants, and they form an increasingly important model system for the study of development in higher plants. We now report on the molecular genetic analysis of the srh1 mutant in Arabidopsis thaliana impaired in root hair tip growth. We show that srh1 is a new allele of cow1 (can of worms1) and we identified the COW1 gene using a positional cloning strategy. The N-terminus of the COW1 protein is 32% identical to an essential phosphatidylinositol transfer protein (PITP), the yeast Sec14 protein (sec14p) while the C-terminus is 34.5% identical to a late nodulin of Lotus japonicus, Nlj16. We show that expression of the COW1 lipid-binding domain complements the growth defect associated with Sec14p dysfunction in yeast. In addition, we show that GFP fused to the COW1 protein specifically accumulates at the site of root hair outgrowth. We conclude that the COW1 protein is a PITP, essential for proper root hair growth.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Transferencia de Fosfolípidos/biosíntesis , Proteínas de Transferencia de Fosfolípidos/genética , Raíces de Plantas/crecimiento & desarrollo , Alelos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Mutación , Fenotipo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Plant Mol Biol ; 52(4): 715-27, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-13677462

RESUMEN

The yeast Skp1 protein is a component of the SCF complex, an E3 enzyme involved in the specific protein degradation pathway via ubiquitination. Skp1 binds to F-box proteins to trigger specific recognition of proteins targeted for degradation. SKP1-like genes have been found in a variety of eukaryotes including yeast, man, Caenorhabditis elegans and Arabidopsis thaliana. The Arabidopsis genome contains 20 SKP1-like genes called ASK (for Arabidopsis SKP1-like), among which only ASK1 has been characterized in detail. The analysis of the expression pattern of the ASK genes in Arabidopsis should provide key information for the understanding of the biological role of this family in protein degradation and in different cellular mechanisms. In this paper, we describe the expression profiles of 19 ASK promoter-GUS fusions in stable transformants of Arabidopsis, with a special emphasis on floral organ development. Four ASK promoters did not show any detectable expression in either inflorescences or seedlings. Our results on the ASK1 expression profile are consistent with previous reports. Several ASK promoters show clear tissue-specific expression (for instance in the connective of anthers or in the embryo). We also found that almost half (9/19) of ASK promoters direct a post-meiotic expression in the male gametophyte. Tight regulation of the expression of this gene family indicates a crucial role of the ubiquitin degradation pathway during development, particularly during male gametophyte development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...