Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16518, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783765

RESUMEN

Droplets that spontaneously penetrate a gap between two hydrophobic surfaces without any external stimulus seems counterintuitive. However, in this work we show that it can be energetically favorable for a droplet to penetrate a gap formed by two hydrophobic or in some cases even superhydrophobic surfaces. For this purpose, we derived an analytical equation to calculate the change in Helmholtz free energy of a droplet penetrating a hydrophobic gap. The derived equation solely depends on the gap width, the droplet volume and the contact angle on the gap walls, and predicts whether a droplet penetrates a hydrophobic gap or not. Additionally, numerical simulations were conducted to provide insights into the gradual change in Helmholtz free energy during the process of penetration and to validate the analytical approach. A series of experiments with a hydrophobic gap having an advancing contact angle of [Formula: see text], a droplet volume of about 10 [Formula: see text]L and different gap widths confirmed the theoretical predictions. Limits and possible deviations between the analytical solution, the simulation and the experiments are presented and discussed.

2.
Nat Commun ; 14(1): 4571, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516769

RESUMEN

Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop's sliding velocity. To make a step forward in quantitative understanding, we measured the velocity [Formula: see text], contact width [Formula: see text], contact length [Formula: see text], advancing [Formula: see text], and receding contact angle [Formula: see text] of liquid drops sliding down inclined flat surfaces made of different materials. We find the friction force acting on sliding drops of polar and non-polar liquids with viscosities ([Formula: see text]) ranging from 10-3 to 1 [Formula: see text] can empirically be described by [Formula: see text] for a velocity range up to 0.7 ms-1. The dimensionless friction coefficient [Formula: see text] defined here varies from 20 to 200. It is a material parameter, specific for a liquid/surface combination. While static wetting is fully described by [Formula: see text] and [Formula: see text], for dynamic wetting the friction coefficient is additionally necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...