Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Biol Chem ; 299(5): 103029, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36806681

RESUMEN

Vascular endothelial cells form the inner cellular lining of blood vessels and have myriad physiologic functions including angiogenesis and response to hypoxia. We recently identified a set of endothelial cell (EC)-enriched long noncoding RNAs (lncRNAs) in differentiated human primary cell types and described the role of the STEEL lncRNA in angiogenic patterning. We sought to further understand the role of EC-enriched lncRNAs in physiologic adaptation of the vascular endothelium. In this work, we describe an abundant, cytoplasmic, and EC-enriched lncRNA, GATA2-AS1, that is divergently transcribed from the EC-enriched developmental regulator, GATA2. While GATA2-AS1 is largely coexpressed with GATA2 in ECs, GATA2-AS1 and GATA2 appear to be complementary rather than synergistic as they have mostly distinct target genes. Common single nucleotide variants in GATA2-AS1 exons are associated with early-onset coronary artery disease and decreased expression of GATA2-AS1 in endothelial cell lines. In most cells, HIF1-α is central to the transcriptional response to hypoxia, while in ECs, both HIF1-α and HIF2-α are required to coordinate an acute and chronic response, respectively. In this setting, GATA2-AS1 contributes to the "HIF switch" and augments HIF1-α induction in acute hypoxia to regulate HIF1-α/HIF2-α balance. In hypoxia, GATA2-AS1 orchestrates HIF1-α-dependent induction of the glycolytic pathway and HIF1-α-independent maintenance of mitochondrial biogenesis. Similarly, GATA2-AS1 coordinates both metabolism and "tip/stalk" cell signaling to regulate angiogenesis in hypoxic ECs. Furthermore, we find that GATA2-AS1 expression patterns are perturbed in atherosclerotic disease. Together, these results define a role for GATA2-AS1 in the EC-specific response to hypoxia.


Asunto(s)
Factor de Transcripción GATA2 , Subunidad alfa del Factor 1 Inducible por Hipoxia , ARN Largo no Codificante , Transducción de Señal , Humanos , Células Endoteliales/metabolismo , Factor de Transcripción GATA2/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36250464

RESUMEN

For patients and caregivers to be fully informed about how living organ donation or prior kidney injury affects future health, we need to better understand the role of kidney reserve in physiological adaptation, especially during pregnancy. Importantly, epidemiological studies reason that live kidney donors are at increased risk for developing preeclampsia, a hypertensive disorder of pregnancy with serious implications for maternal and fetal health. Despite the import of this finding, the mechanistic basis for this increased risk is not understood. In this issue of the JCI, Dupont, Berg, and co-authors provide strong evidence that impaired placental perfusion, placental ischemia, increased soluble fms-like tyrosine kinase 1 (sFLT1), and a maternal preeclampsia-like phenotype are associated with an inability to upregulate the l-tryptophan-derived l-kynurenine pathway during pregnancy in mice with blunted renal reserve. These surprising revelations underscore the curious quiddity of l-tryptophan.


Asunto(s)
Preeclampsia , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Animales , Femenino , Humanos , Quinurenina/metabolismo , Ratones , Placenta/metabolismo , Factor de Crecimiento Placentario , Preeclampsia/metabolismo , Embarazo , Triptófano/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Sci Rep ; 12(1): 14537, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008455

RESUMEN

Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.


Asunto(s)
Inhibidores de la Angiogénesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Pez Cebra
4.
Eur Respir J ; 59(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34112731

RESUMEN

Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Sepsis , Lesión Pulmonar Aguda/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Células Endoteliales , Humanos , Ratones , MicroARNs/genética , Sepsis/complicaciones , Sepsis/terapia
5.
Front Genet ; 12: 668313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512715

RESUMEN

The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.

6.
Sci Rep ; 11(1): 7818, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837224

RESUMEN

Subarachnoid haemorrhage (SAH) is a type of hemorrhagic stroke that is associated with high morbidity and mortality. New effective treatments are needed to improve outcomes. The pathophysiology of SAH is complex and includes early brain injury and delayed cerebral ischemia, both of which are characterized by blood-brain barrier (BBB) impairment. We isolated brain endothelial cells (BECs) from mice subjected to SAH by injection of blood into the prechiasmatic cistern. We used gene expression profiling to identify 707 unique genes (2.8% of transcripts, 403 upregulated, 304 downregulated, 24,865 interrogated probe sets) that were significantly differentially expressed in mouse BECs after SAH. The pathway involving prostaglandin synthesis and regulation was significantly upregulated after SAH, including increased expression of the Ptgs2 gene and its corresponding COX-2 protein. Celecoxib, a selective COX-2 inhibitor, limited upregulation of Ptgs2 in BECs. In this study, we have defined the gene expression profiling of BECs after experimental SAH and provide further insight into BBB pathophysiology, which may be relevant to other neurological diseases such as traumatic brain injury, brain tumours, ischaemic stroke, multiple sclerosis, and neurodegenerative disorders.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/metabolismo , Transcriptoma , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Celecoxib/uso terapéutico , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Ratones , ARN/genética , ARN/aislamiento & purificación , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Hemorragia Subaracnoidea/tratamiento farmacológico , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Circulation ; 144(5): 365-381, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33910388

RESUMEN

BACKGROUND: eNOS (endothelial nitric oxide synthase) is an endothelial cell (EC)-specific gene predominantly expressed in medium- to large-sized arteries where ECs experience atheroprotective laminar flow with high shear stress. Disturbed flow with lower average shear stress decreases eNOS transcription, which leads to the development of atherosclerosis, especially at bifurcations and curvatures of arteries. This prototypic arterial EC gene contains 2 distinct flow-responsive cis-DNA elements in the promoter, the shear stress response element (SSRE) and the KLF (Krüppel-like factor) element. Previous in vitro studies suggested their positive regulatory functions on flow-induced transcription of EC genes including eNOS. However, the in vivo function of these cis-DNA elements remains unknown. METHODS: Insertional transgenic mice with a mutation at each flow-responsive cis-DNA element were generated using a murine eNOS promoter-ß-galactosidase reporter by linker-scanning mutagenesis and compared with episomal-based mutations in vitro. DNA methylation at the eNOS proximal promoter in mouse ECs was assessed by bisulfite sequencing or pyrosequencing. RESULTS: Wild type mice with a functional eNOS promoter-reporter transgene exhibited reduced endothelial reporter expression in the atheroprone regions of disturbed flow (n=5). It is surprising that the SSRE mutation abrogated reporter expression in ECs and was associated with aberrant hypermethylation at the eNOS proximal promoter (n=7). Reporter gene silencing was independent of transgene copy number and integration position, indicating that the SSRE is a critical cis-element necessary for eNOS transcription in vivo. The KLF mutation demonstrated an integration site-specific decrease in eNOS transcription, again with marked promoter methylation (n=8), suggesting that the SSRE alone is not sufficient for eNOS transcription in vivo. In wild type mice, the native eNOS promoter was significantly hypermethylated in ECs from the atheroprone regions where eNOS expression was markedly repressed by chronic disturbed flow, demonstrating that eNOS expression is regulated by flow-dependent DNA methylation that is region-specific in the arterial endothelium in vivo. CONCLUSIONS: We report, for the first time, that the SSRE and KLF elements are critical flow sensors necessary for a transcriptionally permissive, hypomethylated eNOS promoter in ECs under chronic shear stress in vivo. Moreover, eNOS expression is regulated by flow-dependent epigenetic mechanisms, which offers novel mechanistic insight on eNOS gene regulation in atherogenesis.


Asunto(s)
Regulación de la Expresión Génica , Óxido Nítrico Sintasa de Tipo III/genética , Secuencias Reguladoras de Ácidos Nucleicos , Elementos de Respuesta , Animales , Biomarcadores , Velocidad del Flujo Sanguíneo , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Epigénesis Genética , Dosificación de Gen , Silenciador del Gen , Genes Reporteros , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional
8.
Wiley Interdiscip Rev RNA ; 12(5): e1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33694288

RESUMEN

Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
J Immunol ; 204(5): 1173-1187, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996458

RESUMEN

Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.


Asunto(s)
Epigénesis Genética/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Regiones Promotoras Genéticas/inmunología , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
11.
Curr Opin Pharmacol ; 45: 72-80, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31125866

RESUMEN

Epigenetic mechanisms regulate the cell type-specific expression of endothelial-enriched genes. A major question has been how chromatin modifiers without inherent sequence specificity can be targeted to genomic coordinates. Recently, long noncoding RNAs (lncRNAs) have emerged as candidates for specifying genomic positioning for chromatin modifiers. However, lncRNAs function by a number of mechanisms in both the nucleus and the cytoplasm. Recent studies indicate the existence of endothelial-enriched lncRNAs. This review discusses lncRNA regulation in endothelial cells with a focus on four recently described nuclear-enriched lncRNAs: MANTIS, LEENE, STEEL, and GATA6-AS. This emerging work on these lncRNAs contributes to our understanding of epigenetic regulation in the vascular endothelium with links to important themes in endothelial biology, including angiogenesis and shear stress.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , ARN Largo no Codificante , Animales , Cromatina , Epigénesis Genética , Genoma , Humanos , ARN Largo no Codificante/uso terapéutico
12.
J Vis Exp ; (140)2018 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-30394398

RESUMEN

We describe a workflow for the analysis of gene expression from endothelial cells subject to a steady laminar flow using multiple monitored parallel-plate flow chambers. Endothelial cells form the inner cellular lining of blood vessels and are chronically exposed to the frictional force of blood flow called shear stress. Under physiological conditions, endothelial cells function in the presence of various shear stress conditions. Thus, the application of shear stress conditions in in vitro models can provide greater insight into endothelial responses in vivo. The parallel-plate flow chamber previously published by Lane et al.9 is adapted to study endothelial gene regulation in the presence and absence of steady (non-pulsatile) laminar flow. Key adaptations in the set-up for laminar flow as presented here include a large, dedicated environment to house concurrent flow circuits, the monitoring of flow rates in real-time, and the inclusion of an exogenous reference RNA for the normalization of quantitative real-time PCR data. To assess multiple treatments/conditions with the application of shear stress, multiple flow circuits and pumps are used simultaneously within the same heated and humidified incubator. The flow rate of each flow circuit is measured continuously in real-time to standardize shear stress conditions throughout the experiments. Because these experiments have multiple conditions, we also use an exogenous reference RNA that is spiked-in at the time of RNA extraction for the normalization of RNA extraction and first-strand cDNA synthesis efficiencies. These steps minimize the variability between samples. This strategy is employed in our pipeline for the gene expression analysis with shear stress experiments using the parallel-plate flow chamber, but parts of this strategy, such as the exogenous reference RNA spike-in, can easily and cost-effectively be used for other applications.


Asunto(s)
Células Endoteliales/metabolismo , Expresión Génica/genética , Hemodinámica/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Estrés Mecánico
13.
PLoS One ; 13(8): e0202778, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30169548

RESUMEN

BACKGROUND: MicroRNAs (miR) are small non-coding RNAs that regulate diverse biological functions. The bicistronic gene miR-143/145 determines cell fate and phenotype of vascular smooth muscle cells (VSMC), in part, by destabilizing Elk-1 mRNA. The transcription factor c-Myb also regulates differentiation and proliferation of VSMC, and here we test whether these effects may be mediated by miR-143/145. METHODS & RESULTS: Flow cytometry of cardiovascular-directed d3.75 embryoid bodies (EBs) isolated smooth muscle progenitors with specific cell surface markers. In c-myb knockout (c-myb -/-) EB, these progenitors manifest low levels of miR-143 (19%; p<0.05) and miR-145 (6%; p<0.01) expression as compared to wild-type (wt) EB. Primary VSMC isolated from transgenic mice with diminished expression (c-myblx/lx) or reduced activity (c-mybh/h) of c-Myb also manifest low levels of miR-143 (c-myblx/lx: 50%; c-mybh/h: 41%), and miR-145 (c-myblx/lx: 49%; c-mybh/h: 56%), as compared to wt (P<0.05). Sequence alignment identified four putative c-Myb binding sites (MBS1-4) in the proximal promoter (PP) of the miR-143/145 gene. PP-reporter constructs revealed that point mutations in MBS1 and MBS4 abrogated c-Myb-dependent transcription from the miR-143/145 PP (P<0.01). Chromatin immunoprecipitation (ChIP) revealed preferential c-Myb binding at MBS4 (p<0.001). By conjugating Elk-1 3'-untranslated region (UTR) to a reporter and co-transducing wt VSMC with this plus a miR-143-antagomir, and co-transducing c-myblx/lx VSMC with this plus a miR-143-mimic, we demonstrate that c-Myb's ability to repress Elk-1 is mediated by miR-143. CONCLUSION: c-Myb regulates VSMC gene expression by transcriptional activation of miR-143/145.


Asunto(s)
MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Sitios de Unión , Células Cultivadas , Inmunoprecipitación de Cromatina , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Mutación Puntual , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myb/genética , Activación Transcripcional/genética , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
14.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29414790

RESUMEN

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Asunto(s)
Cromatina/química , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/química , Pez Cebra/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/metabolismo , Endotelio Vascular/citología , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
15.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467285

RESUMEN

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Asunto(s)
Cromatina/metabolismo , Células Endoteliales , Neovascularización Fisiológica , ARN Largo no Codificante , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Hemodinámica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones SCID , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
Epigenomics ; 8(7): 959-79, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27381277

RESUMEN

The modern landscape of gene regulation involves interacting factors that ultimately lead to gene activation or repression. Epigenetic mechanisms provide a perspective of cellular phenotype as dynamically regulated and responsive to input. This perspective is supported by the generation of induced pluripotent stem cells from fully differentiated cell types. In vascular endothelial cells, evidence suggests that epigenetic mechanisms play a major role in the expression of endothelial cell-specific genes such as the endothelial nitric oxide synthase (NOS3/eNOS). These mechanisms are also important for eNOS expression in response to environmental stimuli such as hypoxia and shear stress. A newer paradigm in epigenetics, long noncoding RNAs offer a link between genetic variation, epigenetic regulation and disease. While the understanding of epigenetic mechanisms is early in its course, it is becoming clear that approaches to understanding the interaction of these factors and their inputs will be necessary to improve outcomes in cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Endotelio Vascular/metabolismo , Epigénesis Genética , Expresión Génica , Acetilación , Animales , Enfermedades Cardiovasculares/metabolismo , Reprogramación Celular , Metilación de ADN , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
17.
Nat Commun ; 7: 10160, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26744078

RESUMEN

Previous studies have shown that biological noise may drive dynamic phenotypic mosaicism in isogenic unicellular organisms. However, there is no evidence for a similar mechanism operating in metazoans. Here we show that the endothelial-restricted gene, von Willebrand factor (VWF), is expressed in a mosaic pattern in the capillaries of many vascular beds and in the aorta. In capillaries, the mosaicism is dynamically regulated, with VWF switching between ON and OFF states during the lifetime of the animal. Clonal analysis of cultured endothelial cells reveals that dynamic mosaic heterogeneity is controlled by a low-barrier, noise-sensitive bistable switch that involves random transitions in the DNA methylation status of the VWF promoter. Finally, the hearts of VWF-null mice demonstrate an abnormal endothelial phenotype as well as cardiac dysfunction. Together, these findings suggest a novel stochastic phenotype switching strategy for adaptive homoeostasis in the adult vasculature.


Asunto(s)
Aorta/metabolismo , Capilares/metabolismo , Metilación de ADN , Células Endoteliales/metabolismo , Mosaicismo , ARN Mensajero/metabolismo , Factor de von Willebrand/genética , Animales , Inmunoprecipitación de Cromatina , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Células 3T3 NIH , Fenotipo , Regiones Promotoras Genéticas , Arteria Pulmonar/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de von Willebrand/metabolismo
18.
J Cereb Blood Flow Metab ; 36(11): 1942-1954, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26661216

RESUMEN

Outcome varies among patients with subarachnoid hemorrhage but known prognostic factors explain only a small portion of the variation in outcome. We hypothesized that individual genetic variations influence brain and vascular responses to subarachnoid hemorrhage and investigated this using inbred strains of mice.Subarachnoid hemorrhage was induced in seven inbred and a chromosome 7 substitution strain of mouse. Cerebral blood flow, vasospasm of the middle cerebral artery, and brain injury were assessed. After 48 h of subarachnoid hemorrhage, mice showed significant middle cerebral artery vasospasm that correlated positively with reduction in cerebral blood flow at 45 min. Mice also had increased neuronal injury compared to sham controls; A/J and C57BL/6 J strains represented the most and least severe, respectively. However, brain injury did not correlate with cerebral blood flow reduction at 45 min or with vasospasm at 48 h. Chromosome 7 substitution did not influence the degree of vasospasm or brain injury.Our data suggested that mouse genetic background influences outcome of subarachnoid hemorrhage. Investigations into the genetic factors causing these inter-strain differences may provide insight into the etiology of the brain damage following subarachnoid hemorrhage. These findings also have implications for animal modeling of disease and suggest that genetic differences may also modulate outcome in other cardiovascular diseases.


Asunto(s)
Circulación Cerebrovascular/genética , Antecedentes Genéticos , Arteria Cerebral Media/fisiopatología , Hemorragia Subaracnoidea/genética , Vasoespasmo Intracraneal/genética , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/fisiopatología , Vasoespasmo Intracraneal/etiología , Vasoespasmo Intracraneal/patología , Vasoespasmo Intracraneal/fisiopatología
19.
Arterioscler Thromb Vasc Biol ; 35(11): 2297-306, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404488

RESUMEN

Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics.


Asunto(s)
Enfermedades Cardiovasculares/genética , Endotelio Vascular/metabolismo , Epigénesis Genética , Acetilación , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Ensamble y Desensamble de Cromatina , Metilación de ADN , Regulación de la Expresión Génica , Terapia Genética , Histonas/metabolismo , Humanos , Metilación , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética
20.
Curr Opin Hematol ; 22(3): 243-51, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25767954

RESUMEN

PURPOSE OF REVIEW: Remarkable new advances have been made in the field of posttranscriptional gene regulation over recent years. These include the revelation of noncoding RNAs, such as microRNAs, antisense transcripts and their interactions with RNA-binding proteins (RBPs) in the context of both health and disease settings, such as hypoxia. In particular, these discoveries bear much relevance to the field of vascular biology, which historically has focused upon transcriptional processes. Thus, the contributions of these posttranscriptional gene regulatory mechanisms to vascular and endothelial biology represent a newer concept that warrants discussion. RECENT FINDINGS: Recent studies have revealed two emerging themes that are critical to endothelial/vascular biology and function. First is the functional integration between the microRNA pathway and the cellular hypoxic response, which, in addition to specific microRNAs, involves key components of the microRNA biogenesis machinery. A key concept here is the regulation of a master transcriptional programme through posttranscriptional mechanisms. The second major theme involves the dynamic interactions between RBPs, microRNAs and antisense RNAs. The condition-dependent collaborations and competitions between these different classes of posttranscriptional regulators reveal a critical layer of control for gene expression. SUMMARY: Taken together, these findings bear significant diagnostic and therapeutic implications for vascular disease.


Asunto(s)
Hipoxia de la Célula/genética , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...