Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(36): 17049-17063, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39189358

RESUMEN

Preservatives are critical ingredients in various pharmaceutical and consumer products. In particular, a high efficacy preservative system is essential in enhancing the shelf-life and safety of these products. However, the development of such a preservative system heavily relies on experimental approaches. In this study, molecular dynamics (MD) simulation was complemented with quantitative structure-activity relationship (QSAR) modelling to comprehensively evaluate polymer-preservative interactions between three different polymers (polyethylene terephthalate, PET; polypropylene, PP; and cellulose) and a series of preservatives from the classes of aliphatic, aromatic, and organic acids. First, adsorption of preservatives onto polymer surfaces was simulated in an aqueous environment. The preservatives did not adhere to hydrophilic cellulose, but most preservatives were adsorbed by PET and PP in distinct configurations. Interaction energies (IEs) between the preservatives and the polymers generally increase from cellulose to PP and PET. The diffusion coefficients of preservatives are dependent on polymer nature, preservative structure, and their resulting molecular interactions. Linear and low molecular weight preservatives exhibit higher diffusion coefficients in polymers. For a particular preservative, diffusion coefficients increased in the order of cellulose < PET < PP. Finally, using MD properties and molecular descriptors of preservatives, QSAR models were developed to identify key descriptors of preservatives and predict their IEs and diffusion coefficients in polymers. This study demonstrates a computational approach for identifying critical materials properties, and predicting polymer-preservative molecular interactions in water. Such an approach streamlines the rational selection and design of high efficacy preservative systems for various pharmaceutical, food and cosmetic products. Furthermore, the integrated computational strategy also reduces trial-and-error experimental efforts, thereby accelerating the development of high efficacy preservative systems.

2.
Toxicol In Vitro ; 100: 105912, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39069215

RESUMEN

Studying percutaneous penetration of various cosmetic ingredients through intact and compromised skin can provide insight on quantitative exposure assessment for baby products intended for diapered skin. We developed an in vitro model (tape-stripped human skin) designed to achieve the Trans-Epidermal Water Loss values measured in babies with various degrees of diaper dermatitis. Six reference compounds showed the impact of physicochemical properties on absorption through this "diaper rash" skin model. Under simulated diaper conditions, dermal absorption of cosmetic ingredients (phenoxyethanol, sodium benzoate, benzyl alcohol, disodium EDTA, and propylene glycol) was different, but <100%. Additionally, the effect of diaper rash on dermal absorption of well-absorbed ingredients (phenoxyethanol, sodium benzoate, and benzyl alcohol) was limited (enhancement of 1.1-1.3), while the enhancement for moderately absorbed compounds (disodium EDTA and propylene glycol) was 1.8-3.3. Absorption via skin with "diaper rash" is specific to individual ingredients and exposure conditions, so a fixed uncertainty factor is not appropriate for safety assessment. The data support that the default 100% dermal absorption commonly used in first-tier risk assessments for diapered skin is conservative. This diaper rash skin model provides a practical tool of estimating absorption of various ingredients in baby products intended for diapered skin.


Asunto(s)
Cosméticos , Dermatitis del Pañal , Absorción Cutánea , Piel , Humanos , Cosméticos/toxicidad , Piel/metabolismo , Piel/efectos de los fármacos , Lactante , Técnicas In Vitro , Pañales Infantiles , Modelos Biológicos
3.
Skin Pharmacol Physiol ; 28(1): 12-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25034576

RESUMEN

BACKGROUND/AIMS: Establishing dermal penetration rates is important to better understand the safety of topically applied materials, especially for premature infant skin with compromised skin barrier function. Skin prematurity involves thinner stratum corneum and underdeveloped epidermis/dermis resulting in decreased barrier function, higher transepidermal water loss and greater chemical penetration, when compared to healthy full-term neonate/adult skin. METHODS: We developed an in vitro skin penetration model using human ex vivo skin to estimate penetration for premature/compromised skin barrier conditions by tape stripping. Skin barrier deficiency was characterized by transepidermal water loss. Baby wipe lotion containing 5 mg/cm(2) [(14)C]-PEG-7 phosphate was applied 5 times to human skin samples of intact, moderately or highly compromised skin barrier and once at 25 mg/cm(2) over 24 h. RESULTS: Overall penetration of [(14)C]-PEG-7 phosphate was low (<5%) even for highly compromised skin. The absorption rate was higher (p < 0.001) for compromised skin versus intact skin. No significant difference was seen between moderately and highly compromised skin by repeated dosing. Under single-dose conditions, penetration through highly compromised skin was significantly higher compared to intact skin (p = 0.001). CONCLUSION: Our model demonstrates that even under highly compromised skin conditions, penetration of [(14)C]-PEG-7 phosphate is low (<5%) and only 4-6 times higher compared to mature/intact skin and does not approach 100%. Penetration was unaffected by single or multiple dosing conditions.


Asunto(s)
Fosfatos/farmacología , Polietilenglicoles/farmacología , Absorción Cutánea , Piel/lesiones , Piel/metabolismo , Seguridad de Productos para el Consumidor , Humanos , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...