Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Methods Mol Biol ; 2831: 333-350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134861

RESUMEN

Axonal damage is a common feature of traumatic injury and neurodegenerative disease. The capacity for axons to regenerate and to recover functionality after injury is a phenomenon that is seen readily in the peripheral nervous system, especially in rodent models, but human axonal regeneration is limited and does not lead to full functional recovery. Here we describe a system where dynamics of human axonal outgrowth and regeneration can be evaluated via live imaging of human-induced pluripotent stem cell (hiPSC)-derived neurons cultured in microfluidic systems, in which cell bodies are isolated from their axons. This system could aid in studying axonal outgrowth dynamics and could be useful for testing potential drugs that encourage regeneration and repair of the nervous system.


Asunto(s)
Axones , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Regeneración Nerviosa , Humanos , Células Madre Pluripotentes Inducidas/citología , Axones/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/citología , Regeneración Nerviosa/fisiología , Microfluídica/métodos , Microfluídica/instrumentación , Diferenciación Celular , Células Cultivadas , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultivo de Célula/métodos
2.
Foodborne Pathog Dis ; 21(9): 546-559, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957999

RESUMEN

Goats are often asymptomatic carriers of Campylobacter, including the foodborne pathogen Campylobacter jejuni. Infections can have significant and economically detrimental health outcomes in both humans and animals. The primary objective of this study was to estimate the prevalence of Campylobacter in U.S. goat herds. Campylobacter species were isolated from 106 of 3,959 individual animals and from 42 of 277 goat operations that participated in fecal sample collection as part of the National Animal Health Monitoring System Goat 2019 study. Weighted animal-level prevalence was 2.3% (SE = 0.5%) and operation prevalence was 13.0% (SE = 3.2%). Animal-level prevalence ranged widely from 0 to 70.0%, however, 52.4% of positive operations (22/42) had only a single isolate. C. jejuni was the most frequently isolated species (68.9%; 73/106), followed by C. coli (29.3%, 31/106). A total of 46.2% (36/78) of viable isolates were pan-susceptible to 8 antimicrobials. Resistance to tetracycline (TET) was observed in 44.9% (35/78) of isolates, while 12.8% (10/78) were resistant to ciprofloxacin (CIP) and nalidixic acid (NAL). Among all isolates, a single resistance profile CIP-NAL-TET was observed in 3.8% (3/78) of isolates. A total of 35 unique sequence types (STs) were identified, 11 of which are potentially new. Multiple C. jejuni STs were observed in 48.1% (13/27) of positive operations. Goats with access to surface water, operations reporting antibiotics in the feed or water (excluding ionophores and coccidiostats), and operations reporting abortions and without postabortion management tasks had significantly greater odds of being Campylobacter positive. This snapshot of the U.S. goat population enriches the limited pool of knowledge on Campylobacter species presence in U.S. goats.


Asunto(s)
Antibacterianos , Infecciones por Campylobacter , Campylobacter , Heces , Enfermedades de las Cabras , Cabras , Animales , Heces/microbiología , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Infecciones por Campylobacter/epidemiología , Estados Unidos/epidemiología , Prevalencia , Campylobacter/efectos de los fármacos , Campylobacter/aislamiento & purificación , Campylobacter/clasificación , Antibacterianos/farmacología , Enfermedades de las Cabras/microbiología , Enfermedades de las Cabras/epidemiología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana
3.
Foodborne Pathog Dis ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38502797

RESUMEN

Escherichia coli and Enterococcus species are normal bacteria of the gastrointestinal tract and serve as indicator organisms for the epidemiology and emergence of antimicrobial resistance in their hosts and the environment. Some E. coli serovars, including E. coli O157:H7, are important human pathogens, although reservoir species such as goats remain asymptomatic. We describe the prevalence and antimicrobial resistance of generic E. coli, E. coli O157:H7, and Enterococcus species collected from a national surveillance study of goat feces as part of the National Animal Health Monitoring System (NAHMS) Goat 2019 study. Fecal samples were collected from 4918 goats on 332 operations across the United States. Expectedly, a high prevalence of E. coli (98.7%, 4850/4915) and Enterococcus species (94.8%, 4662/4918) was found. E. coli O157:H7 prevalence was low (0.2%; 10/4918). E. coli isolates, up to three per operation, were evaluated for antimicrobial susceptibility and 84.7% (571/674) were pansusceptible. Multidrug resistance (MDR; ≥3 classes) was uncommon among E. coli, occurring in 8.2% of isolates (55/674). Resistance toward seven antimicrobial classes was observed in a single isolate. Resistance to tetracycline alone (13.6%, 92/674) or to tetracycline, streptomycin, and sulfisoxazole (7.0% 47/674) was the most common pattern. All E. coli O157:H7 isolates were pansusceptible. Enterococcus isolates, up to four per operation, were prioritized by public health importance, including Enterococcus faecium and Enterococcus faecalis and evaluated. Resistance to lincomycin (93.8%, 1232/1313) was most common, with MDR detected in 29.5% (388/1313) of isolates. The combination of ciprofloxacin, lincomycin, and quinupristin resistance (27.1%, 105/388) was the most common pattern detected. Distribution and characteristics of antimicrobial resistance in E. coli and Enterococcus in the U.S. goat population from this study can inform stewardship considerations and public health efforts surrounding goats and their products.

4.
Sci Rep ; 13(1): 5597, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020097

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1A4V mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1+/A4V hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1/genética , Axones , Superóxido Dismutasa/genética , Regeneración Nerviosa , Neuronas Motoras/fisiología , Mutación
5.
Prev Vet Med ; 213: 105857, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36773374

RESUMEN

Several studies have investigated antimicrobial resistance (AMR) in Salmonella spp. and Escherichia coli isolated from hospitalized horses, but studies conducted on community-based populations of equids are limited. The factors associated with AMR in these bacteria in the general horse population are not well understood. The primary objective of our study was to estimate the prevalence of Salmonella and describe antimicrobial susceptibility of Salmonella and E. coli from equids across the United States. The second objective was to identify associations between health management and biosecurity practices and AMR. Fecal samples submitted from 1357 equids on 199 operations were tested for Salmonella, identifying 27 positive samples with 29 isolates belonging to 18 serotypes. Fecal sample and operation-level prevalence of Salmonella was 2.0% (27/1357) and 7.0% (14/199), respectively. Most (25/29) isolates were pan-susceptible while four isolates exhibited resistance, three of which were multidrug resistant. Of the 721 samples cultured for E. coli, 85% (613/721) were positive. Eighty-six percent of the E. coli isolates recovered were pan-susceptible (529/612). Ten isolates were intermediate to one antimicrobial drug and susceptible to all others. Seventy-three E. coli isolates (11.9%, SE=1.3) were resistant to one or more antimicrobials, corresponding to a 33.0% (64/194) operation-level prevalence. Resistance to sulfonamide drugs was most common with 63 isolates (10.3%) resistant to sulfisoxazole, 57 of which (9.3%) were resistant to trimethoprim-sulfamethoxazole. MDR in E. coli was rare (1.8%, SE=0.5). Univariate and multivariable regression were used to evaluate associations between health management and biosecurity questionnaire items and AMR in E. coli. The outcome modeled was resistance to any of the 14 tested antimicrobials. Depending on the operation type, operations with greater than 20 resident equids were significantly associated with resistance. In addition, performance operations were significantly associated with resistance when compared to farm/ranch operations. Operations with feed containers that prevent fecal contamination and those that had treated any equids for illness or injury were associated with a lower AMR. The study results suggest that equids in the general population appear to pose low risk of shedding antimicrobial resistant strains of Salmonella and E. coli, and therefore low transmission potential to other equids, animals, humans, or the environment. However, it is prudent to practice good hand hygiene to prevent spread of Salmonella as well as AMR, and to protect both animal and human health. Despite study limitations, potential management factors that may influence prevalence and prevent spread of AMR shed by equids were identified.


Asunto(s)
Antiinfecciosos , Escherichia coli , Animales , Caballos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria , Salmonella , Farmacorresistencia Bacteriana
6.
Prev Vet Med ; 208: 105766, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228513

RESUMEN

Salmonella species are an important cause of gastrointestinal disease in animals, including goats. Additionally, Salmonella species are among the top five U.S. foodborne pathogens causing illness to humans. The goat industry is rapidly expanding in the U.S. yet estimates of Salmonella prevalence within these populations is lacking. The aim of this study was to investigate the fecal prevalence, antimicrobial resistance (AMR), biofilm potential, and virulence profile of Salmonella species isolated from goat feces as part of the United States Department of Agriculture (USDA) National Animal Health Monitoring System (NAHMS) Goat 2019 study, enteric microbe component. A total of 4917 fecal samples were collected from 332 operations, from September 2019-March 2020. Salmonella were isolated using standard enrichment and culture methods; antimicrobial susceptibility was determined by broth microdilution. Biofilm production was assessed using a crystal violet assay and normalized to a positive control strain, and PCR was used to detect virulence genes. Overall, we detected a low prevalence (0.7%, n = 35/4917) of Salmonella in goat feces and identified a broad range of serotypes including S. Bareilly (35%) and a single rare S. Sharon. All isolates were pansusceptible to 14 antimicrobials except one, which was resistant to only tetracycline (MIC ≥ 32 µg/mL). All strains were found to possess the majority of virulence determinants screened, and 40% (14 of 35) formed weak, moderate, or strong biofilm. We found a low prevalence of Salmonella, and characteristics of Salmonella in the U.S. goat population informs ongoing public health efforts to manage risk of animal food products and animal interactions.


Asunto(s)
Antiinfecciosos , Cabras , Estados Unidos/epidemiología , Animales , Humanos , Violeta de Genciana , Salmonella , Antibacterianos/uso terapéutico , Tetraciclina , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética
7.
Neural Regen Res ; 16(10): 1901-1910, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642358

RESUMEN

Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons.

8.
Neurotherapeutics ; 17(3): 973-988, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32236823

RESUMEN

While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Axones/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/enzimología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Axones/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/genética , Superóxido Dismutasa/genética
9.
J Clin Invest ; 130(3): 1506-1512, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32065591

RESUMEN

Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Genes Dominantes , Proteína Jagged-1 , Mutación Missense , Transducción de Señal/genética , Sustitución de Aminoácidos , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Femenino , Glicosilación , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo
10.
Prev Vet Med ; 171: 104750, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472359

RESUMEN

Mycoplasma ovis is a hemotropic bacterium reported to infect sheep, goats, and deer species. Infection in these species can result in anemia, jaundice, and ill-thrift. Although of worldwide distribution, only rare reports of this bacterium in the United States exist. The objectives of this retrospective study were to identify the prevalence and distribution of M. ovis, and identify associated demographic and management risk factors, and reproductive and production outcomes associated with infection on domestic sheep (Ovis aries) operations in the United States. As part of the United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Veterinary Services' National Animal Health Monitoring System (NAHMS) Sheep 2001 and 2011 studies, blood was collected and sera banked from 21,369 ewes in 2001 and 13,128 ewes in 2011. Participating premises were located in 22 states across the United States for each sample year. In 2015 the USDA, Agricultural Research Service, Animal Disease Research Unit received aliquots of these sera, and DNA was extracted and analyzed by PCR for the presence of M. ovis genomic DNA. Flock presence and mean within-flock prevalence of M. ovis were 73.3% and 23.2%, respectively. Model selection using Mallow's Cp Criterion was used to determine which variables significantly affected flock presence and within-flock prevalence. The final flock presence model included flock size, year of blood collection, region, and vaccine administration. The final within-flock prevalence model included year of blood collection, interaction between flock size and region, and interaction between reported abortions and grazing with sheep from other operations. Medium and large operations had a higher flock presence and within-flock prevalence. Flock presence was higher in operations that administered any vaccines. Operations that reported any abortions and grazed with sheep from other operations had a higher within-flock prevalence.


Asunto(s)
Infecciones por Mycoplasma/veterinaria , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/microbiología , Crianza de Animales Domésticos/métodos , Animales , Mycoplasma/aislamiento & purificación , Infecciones por Mycoplasma/sangre , Infecciones por Mycoplasma/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , Factores de Riesgo , Ovinos , Enfermedades de las Ovejas/sangre , Encuestas y Cuestionarios , Estados Unidos/epidemiología , United States Department of Agriculture , Vacunación/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...