Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 154(22): 224307, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241193

RESUMEN

The results of a combined experimental and computational study of the uranium atom are presented with the aim of determining its electron affinity. Experimentally, the electron affinity of uranium was measured via negative ion photoelectron spectroscopy of the uranium atomic anion, U-. Computationally, the electron affinities of both thorium and uranium were calculated by conducting relativistic coupled-cluster and multi-reference configuration interaction calculations. The experimentally determined value of the electron affinity of the uranium atom was determined to be 0.309 ± 0.025 eV. The computationally predicted electron affinity of uranium based on composite coupled cluster calculations and full four-component spin-orbit coupling was found to be 0.232 eV. Predominately due to a better convergence of the coupled cluster sequence for Th and Th-, the final calculated electron affinity of Th, 0.565 eV, was in much better agreement with the accurate experimental value of 0.608 eV. In both cases, the ground state of the anion corresponds to electron attachment to the 6d orbital.

2.
J Phys Chem A ; 125(27): 5922-5932, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34229436

RESUMEN

Elucidating the multifaceted processes of molecular activation and subsequent reactions gives a fundamental view into the development of iridium catalysts as they apply to fuels and propellants, for example, for spacecraft thrusters. Hydroxylamine, a component of the well-known hydroxylammonium nitrate (HAN) ionic liquid, is a safer alternative and mimics the chemistry and performance standards of hydrazine. The activation of hydroxylamine by anionic iridium clusters, Irn- (n = 1-5), depicts a part of the mechanism, where two hydrogen atoms are removed, likely as H2, and Irn(NOH)- clusters remain. The significant photoelectron spectral differences between these products and the bare clusters illustrate the substantial electronic changes imposed by the hydroxylamine fragment on the iridium clusters. In combination with DFT calculations, a preliminary reaction mechanism is proposed, identifying the possible intermediate steps leading to the formation of Ir(NOH)-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...