Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37623758

RESUMEN

The occurrence of emerging organic contaminants, such as pharmaceuticals, is a growing global concern. In this research, for a membrane bioreactor (MBR) laboratory plant operating at a hydraulic retention time (HRT) of 24 h, fed with real urban wastewater, the heterotrophic biomass behaviour was analysed for two concentrations of erythromycin, ibuprofen, and diclofenac. The concentrations studied for the first phase were erythromycin 0.576 mg L-1, ibuprofen 0.056 mg L-1, and diclofenac 0.948 mg L-1. For Phase 2, the concentrations were increased to erythromycin 1.440 mg L-1, ibuprofen 0.140 mg L-1, and diclofenac 2.370 mg L-1. Heterotrophic biomass was affected and inhibited by the presence of pharmaceutical compounds in both phases. The system response to low concentrations of pharmaceutical compounds occurred in the initial phase of plant doping. Under these operating conditions, there was a gradual decrease in the concentration of mixed liquor suspended solids and the removal of chemical oxygen demand of the system, as it was not able to absorb the effect produced by the pharmaceutical compounds added in both phases.

2.
Membranes (Basel) ; 12(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36295741

RESUMEN

The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor for the treatment of the effluent of an urban wastewater treatment plant, to characterise the ultrafiltration membranes, to study the effectiveness of a proposed cleaning protocol, and to analyse the performance of the photobioreactor. The photobioreactor operated under two days of hydraulic retention times feed with the effluent from the Los Vados wastewater treatment plant (WWTP) (Granada, Spain). The microalgae community in the photobioreactor grew according to the pseudo-second-order model. The effluent obtained could be reused for different uses of diverse quality with the removal of total nitrogen and phosphorus of 56.3% and 64.27%, respectively. The fouling of the polyvinylidene difluoride ultrafiltration membrane after 80 days of operation was slight, increasing the total membrane resistance by approximately 22%. Moreover, the higher temperature of the medium was, the lower intrinsic resistance of the membrane. A total of 100% recovery of the membrane was obtained in the two-phase cleaning protocol, with 42% and 58%, respectively.

3.
Bioresour Technol ; 363: 127968, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36115507

RESUMEN

Every day, large quantities of wastewater are discharged from various sources that could be reused. Wastewater contains nutrients such as nitrogen or phosphorus, which can be recovered. Microalgae-based technologies have attracted attention in this sector, as they are able to bioremediate wastewater, harnessing its nutrients and generating algal biomass useful for different downstream uses, as well as having other advantages. There are multiple species of microalgae capable of growing in wastewater, achieving nutrient removal efficiencies surpassing 70%. On the other hand, microalgae contain lipids that can be extracted for energy recovery in biodiesel. Currently, there are several methods of lipid extraction from microalgae. Other biofuels can also be obtained from microalgae biomass, such as bioethanol, biohydrogen or biogas. This review also provides information on bioenergy products and products in the agri-food industry as well as in the field of human health based on microalgae biomass within the concept of circular bioeconomy.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Reactores Biológicos , Humanos , Lípidos , Nitrógeno/análisis , Nutrientes , Fósforo , Aguas Residuales
4.
Bioresour Technol ; 121: 119-26, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22858475

RESUMEN

Different types of carriers were tested as support material in a lab-scale moving bed biofilm reactor (MBBR) used to treat urban wastewater under three different conditions of hydraulic retention time (HRT) and carrier filling ratios (FR). The bacterial diversity developed on the biofilms responsible of the treatment was studied using a cultivation-independent approach based on the polymerase chain reaction-temperature gradient gel electrophoresis technique (PCR-TGGE). Cluster analysis of TGGE fingerprints showed significant differences of community structure dependent upon the different operational conditions applied. Redundancy analysis (RDA) was used to determine the relationship between the operational conditions (type of carrier, HRT, FR) and bacterial biofilm diversity, demonstrating a significant effect of FR=50%. Phylogenetic analysis of PCR-reamplified and sequenced TGGE bands revealed that the prevalent Bacteria populations in the biofilm were related to Betaproteobacteria (46%), Firmicutes (34%),Alphaproteobacteria (14%) and Gammaproteobacteria (9%).


Asunto(s)
Bacterias/genética , Biopelículas , Reactores Biológicos/microbiología , Ciudades , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Análisis de Varianza , Bacterias/ultraestructura , Secuencia de Bases , Análisis por Conglomerados , Dermatoglifia del ADN , Electroforesis , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...