Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New For (Dordr) ; 54(4): 661-696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361260

RESUMEN

Dutch elm disease (DED) is a vascular wilt disease caused by the pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi with multiple ecological phases including pathogenic (xylem), saprotrophic (bark) and vector (beetle flight and beetle feeding wound) phases. Due to the two DED pandemics during the twentieth century the use of elms in landscape and forest restoration has declined significantly. However new initiatives for elm breeding and restoration are now underway in Europe and North America. Here we discuss complexities in the DED 'system' that can lead to unintended consequences during elm breeding and some of the wider options for obtaining durability or 'field resistance' in released material, including (1) the phenotypic plasticity of disease levels in resistant cultivars infected by O. novo-ulmi; (2) shortcomings in test methods when selecting for resistance; (3) the implications of rapid evolutionary changes in current O. novo-ulmi populations for the choice of pathogen inoculum when screening; (4) the possibility of using active resistance to the pathogen in the beetle feeding wound, and low attractiveness of elm cultivars to feeding beetles, in addition to resistance in the xylem; (5) the risk that genes from susceptible and exotic elms be introgressed into resistant cultivars; (6) risks posed by unintentional changes in the host microbiome; and (7) the biosecurity risks posed by resistant elm deployment. In addition, attention needs to be paid to the disease pressures within which resistant elms will be released. In the future, biotechnology may further enhance our understanding of the various resistance processes in elms and our potential to deploy trees with highly durable resistance in elm restoration. Hopefully the different elm resistance processes will prove to be largely under durable, additive, multigenic control. Elm breeding programmes cannot afford to get into the host-pathogen arms races that characterise some agricultural host-pathogen systems.

2.
New Phytol ; 237(2): 423-440, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259090

RESUMEN

During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.


Asunto(s)
Carbohidratos , Triticum , Triticum/metabolismo , Agua/metabolismo , Grano Comestible/metabolismo , Transporte Biológico , Sequías
3.
Plant Cell Environ ; 45(10): 2875-2897, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35864739

RESUMEN

The number and intensity of flood events will likely increase in the future, raising the risk of flooding stress in terrestrial plants. Understanding flood effects on plant physiology and plant-associated microbes is key to alleviate flooding stress in sensitive species and ecosystems. Reduced oxygen supply is the main constrain to the plant and its associated microbiome. Hypoxic conditions hamper root aerobic respiration and, consequently, hydraulic conductance, nutrient uptake, and plant growth and development. Hypoxia favours the presence of anaerobic microbes in the rhizosphere and roots with potential negative effects to the plant due to their pathogenic behaviour or their soil denitrification ability. Moreover, plant physiological and metabolic changes induced by flooding stress may also cause dysbiotic changes in endosphere and rhizosphere microbial composition. The negative effects of flooding stress on the holobiont (i.e., the host plant and its associated microbiome) can be mitigated once the plant displays adaptive responses to increase oxygen uptake. Stress relief could also arise from the positive effect of certain beneficial microbes, such as mycorrhiza or dark septate endophytes. More research is needed to explore the spiralling, feedback flood responses of plant and microbes if we want to promote plant flood tolerance from a holobiont perspective.


Asunto(s)
Inundaciones , Microbiota , Microbiota/fisiología , Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Plantas , Rizosfera , Microbiología del Suelo
4.
J Fungi (Basel) ; 7(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575725

RESUMEN

Some fungal endophytes of forest trees are recognized as beneficial symbionts against stresses. In previous works, two elm endophytes from the classes Cystobasidiomycetes and Eurotiomycetes promoted host resistance to abiotic stress, and another elm endophyte from Dothideomycetes enhanced host resistance to Dutch elm disease (DED). Here, we hypothesize that the combined effect of these endophytes activate the plant immune and/or antioxidant system, leading to a defense priming and/or increased oxidative protection when exposed to the DED pathogen Ophiostoma novo-ulmi. To test this hypothesis, the short-term defense gene activation and antioxidant response were evaluated in DED-susceptible (MDV1) and DED-resistant (VAD2 and MDV2.3) Ulmus minor genotypes inoculated with O. novo-ulmi, as well as two weeks earlier with a mixture of the above-mentioned endophytes. Endophyte inoculation induced a generalized transient defense activation mediated primarily by salicylic acid (SA). Subsequent pathogen inoculation resulted in a primed defense response of variable intensity among genotypes. Genotypes MDV1 and VAD2 displayed a defense priming driven by SA, jasmonic acid (JA), and ethylene (ET), causing a reduced pathogen spread in MDV1. Meanwhile, the genotype MDV2.3 showed lower defense priming but a stronger and earlier antioxidant response. The defense priming stimulated by elm fungal endophytes broadens our current knowledge of the ecological functions of endophytic fungi in forest trees and opens new prospects for their use in the biocontrol of plant diseases.

5.
Plant Commun ; 2(3): 100112, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34027388

RESUMEN

More than 12,000 plant species (ca. 10% of flowering plants) exude latex when their tissues are injured. Latex is produced and stored in specialized cells named "laticifers". Laticifers form a tubing system composed of rows of elongated cells that branch and create an internal network encompassing the entire plant. Laticifers constitute a recent evolutionary achievement in ecophysiological adaptation to specific natural environments; however, their fitness benefit to the plant still remains to be proven. The identification of Euphorbia lathyris mutants (pil mutants) deficient in laticifer cells or latex metabolism, and therefore compromised in latex production, allowed us to test the importance of laticifers in pest resistance. We provided genetic evidence indicating that laticifers represent a cellular adaptation for an essential defense strategy to fend off arthropod herbivores with different feeding habits, such as Spodoptera exigua and Tetranychus urticae. In marked contrast, we also discovered that a lack of laticifer cells causes complete resistance to the fungal pathogen Botrytis cinerea. Thereafter, a latex-derived factor required for conidia germination on the leaf surface was identified. This factor promoted disease susceptibility enhancement even in the non-latex-bearing plant Arabidopsis. We speculate on the role of laticifers in the co-evolutionary arms race between plants and their enemies.


Asunto(s)
Botrytis/fisiología , Euphorbia/fisiología , Defensa de la Planta contra la Herbivoria , Enfermedades de las Plantas/microbiología , Spodoptera/fisiología , Tetranychidae/fisiología , Animales , Resistencia a la Enfermedad/fisiología , Herbivoria , Interacciones Huésped-Patógeno , Látex/biosíntesis , Células Vegetales/fisiología
6.
J Plant Physiol ; 261: 153420, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33906025

RESUMEN

Long-lived trees benefit from fungal symbiotic interactions in the adaptation to constantly changing environments. Previous studies revealed a core fungal endobiome in Ulmus minor which has been suggested to play a critical role in plant functioning. Here, we hypothesized that these core endophytes are involved in abiotic stress tolerance. To test this hypothesis, two core endophytes (Cystobasidiales and Chaetothyriales) were inoculated into in vitro U. minor plantlets, which were further subjected to drought. Given that elm genotypes resistant to Dutch elm disease (DED) tend to show higher abiotic stress tolerance than susceptible ones, we tested the endophyte effect on two DED-resistant and two DED-susceptible genotypes. Drought stress was moderate; endophyte presence attenuated stomata closure in response to drought in one genotype but this stress did not affect plant survival. In comparison, long-term in-vitro culture proved stressful to mock-inoculated plants, especially in DED-susceptible genotypes. Interestingly, no endophyte-inoculated plant died during the experiment, as compared to high mortality in mock-inoculated plants. In surviving plants, endophyte presence stimulated root and shoot growth, photosynthetic rates, antioxidant activity and molecular changes involving auxin-signaling. These changes and the observed endophyte stability in elm tissues throughout the experiment suggest endophytes are potential tools to improve survival and stress tolerance of DED-resistant elms in elm restoration programs.


Asunto(s)
Ascomicetos/fisiología , Basidiomycota/fisiología , Endófitos/fisiología , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Plantones/fisiología , Ulmus/fisiología , Sequías , Genotipo , Longevidad/fisiología , Enfermedades de las Plantas/genética , Raíces de Plantas/microbiología , Ulmus/crecimiento & desarrollo , Ulmus/microbiología
7.
Tree Physiol ; 40(7): 886-903, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32175581

RESUMEN

Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.


Asunto(s)
Sequías , Micobioma/genética , Inundaciones , Fotosíntesis , Hojas de la Planta , Estrés Fisiológico , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...