RESUMEN
Microsporum canis is a widely distributed dermatophyte, which is among the main etiological agents of dermatophytosis in humans and domestic animals. This fungus invades, colonizes and nourishes itself on the keratinized tissues of the host through various virulence factors. This review will bring together the known information about the mechanisms, enzymes and their associated genes relevant to the pathogenesis processes of the fungus and will provide an overview of those virulence factors that should be better studied to establish effective methods of prevention and control of the disease. Public databases using the MeSH terms "Microsporum canis", "virulence factors" and each individual virulence factor were reviewed to enlist a series of articles, from where only original works in English and Spanish that included relevant information on the subject were selected. Out of the 147 articles obtained in the review, 46 were selected that reported virulence factors for M. canis in a period between 1988 and 2023. The rest of the articles were discarded because they did not contain information on the topic (67), some were written in different languages (3), and others were repeated in two or more databases (24) or were not original articles (7). The main virulence factors in M. canis are keratinases, fungilisins and subtilisins. However, less commonly reported are biofilms or dipeptidylpeptidases, among others, which have been little researched because they vary in expression or activity between strains and are not considered essential for the infection and survival of the fungus. Although it is known that they are truly involved in resistance, infection and metabolism, we recognize that their study could strengthen the knowledge of the pathogenesis of M. canis with the aim of achieving effective treatments, as well as the prevention and control of infection.
Asunto(s)
Microsporum , Factores de Virulencia , Microsporum/patogenicidad , Microsporum/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Humanos , Fenotipo , Dermatomicosis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMEN
Coronavirus disease (COVID-19) is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can be asymptomatic or present with multiple organ dysfunction. Many infected individuals have chronic alterations associated with neuropsychiatric, endocrine, gastrointestinal, and musculoskeletal symptoms, even several months after disease onset, developing long-COVID or post-acute COVID-19 syndrome (PACS). Microbiota dysbiosis contributes to the onset and progression of many viral diseases, including COVID-19 and post-COVID-19 manifestations, which could serve as potential diagnostic and prognostic biomarkers. This review aimed to discuss the most recent findings on gut microbiota dysbiosis and its relationship with the sequelae of PACS. Elucidating these mechanisms could help develop personalized and non-invasive clinical strategies to identify individuals at a higher risk of experiencing severe disease progression or complications associated with PACS. Moreover, the review highlights the importance of targeting the gut microbiota composition to avoid dysbiosis and to develop possible prophylactic and therapeutic measures against COVID-19 and PACS in future studies.
Asunto(s)
COVID-19 , Microbiota , Humanos , Síndrome Post Agudo de COVID-19 , Disbiosis/complicaciones , COVID-19/complicaciones , SARS-CoV-2RESUMEN
Once regarded as inert organelles with limited and ill-defined roles, lipid droplets (LDs) have emerged as dynamic entities with multifaceted functions within the cell. Recent research has illuminated their pivotal role as primary energy reservoirs in the form of lipids, capable of being metabolized to meet cellular energy demands. Their high dynamism is underscored by their ability to interact with numerous cellular organelles, notably the endoplasmic reticulum (the site of LD genesis) and mitochondria, which utilize small LDs for energy production. Beyond their contribution to cellular bioenergetics, LDs have been associated with viral infections. Evidence suggests that viruses can co-opt LDs to facilitate their infection cycle. Furthermore, recent discoveries highlight the role of LDs in modulating the host's immune response. Observations of altered LD levels during viral infections suggest their involvement in disease pathophysiology, potentially through production of proinflammatory mediators using LD lipids as precursors. This review explores these intriguing aspects of LDs, shedding light on their multifaceted nature and implications in viral interactions and disease development.
RESUMEN
Use of the potent tyrosine kinase inhibitor imatinib as the first-line treatment in chronic myeloid leukemia (CML) has decreased mortality from 20% to 2%. Approximately 30% of CML patients experience imatinib resistance, however, largely because of point mutations in the kinase domain of the BCR-ABL1 fusion gene. The aim of this study was to use next-generation sequencing (NGS) to identify mutations related to imatinib resistance. The study included 22 patients diagnosed with CML and experiencing no clinical response to imatinib. Total RNA was used for cDNA synthesis, with amplification of a fragment encompassing the BCR-ABL1 kinase domain using a nested-PCR approach. Sanger and NGS were applied to detect genetic alterations. HaplotypeCaller was used for variant calling, and STAR-Fusion software was applied for fusion breakpoint identification. After sequencing analysis, F311I, F317L, and E450K mutations were detected respectively in three different participants, and in another two patients, single nucleotide variants in BCR (rs9608100, rs140506, rs16802) and ABL1 (rs35011138) were detected. Eleven patients carried e14a2 transcripts, nine had e13a2 transcripts, and both transcripts were identified in one patient. One patient had co-expression of e14a2 and e14a8 transcripts. The results identify candidate single nucleotide variants and co-expressed BCR-ABL1 transcripts in cellular resistance to imatinib.
Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Nucleótidos/uso terapéutico , Resistencia a Antineoplásicos/genéticaRESUMEN
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Asunto(s)
Intoxicación por Arsénico/patología , Arsénico/toxicidad , Agua Potable/química , Contaminantes Químicos del Agua/toxicidad , Arsénico/química , Exposición a Riesgos Ambientales , Humanos , Contaminantes Químicos del Agua/químicaRESUMEN
Chronic exposure to inorganic arsenic (iAs) through contaminated drinking water is an important health problem in certain countries. The use of phytochemicals such as curcumin has recently emerged as an alternative strategy for preventing cellular damage caused by iAs. The Epstein-Barr virus (EBV) affects ~90% of the population and experimental evidence suggested that curcumin mediates cytotoxicity against EBV-infected cells. Due to the potential for an interaction of these factors, the aim of the present study was to evaluate the effect of this phytochemical on iAs-related toxicity in EBV-infected cells. Two independent EBV-immortalized human lymphoblastoid cell lines (LCLs) were used as the model. The cell lines were first incubated with increasing concentrations of curcumin or iAs for 24 and 15 h, respectively, to determine the individual effects of each exposure on cell death. In the next experiment, cell cultures were pre-incubated with 5 µM curcumin for 9 h prior to treatment with 10 µM iAs for 15 h, followed by evaluation of cell death and the cell cycle profile via flow cytometry. The results indicated that individual treatment with either curcumin or iAs induced cell death in a concentration-dependent manner. Furthermore, curcumin pre-treatment enhanced iAs-induced cell death and promoted cell cycle arrest in G1 phase. Taken together, these results suggested that curcumin sensitizes EBV-positive LCLs to the cytotoxic effects of iAs.
RESUMEN
Respiratory syncytial virus (RSV) is most commonly associated with upper respiratory tract infections during childhood. The lipid composition of cells and lipogenic enzymes play an important role in RSV infection. There are controversial data about whether lipid biosynthesis regulators such as AMP-activated protein kinase (AMPK) are deregulated by RSV. Hence, we examined whether the activation state of AMPK is altered in RSV-infected HEp-2 cells. Our data show that RSV infection inhibits AMPK activity, favoring the activation of downstream lipogenic effectors and cellular lipid anabolism in HEp-2 cells.
Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Metabolismo de los Lípidos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Replicación ViralRESUMEN
Curcumin is a phytochemical with potent anti-neoplastic properties. The antitumoral effects of curcumin in cells derived from chronic or acute myeloid leukemia have been already described. However, a comparative study of the cytostatic and cytotoxic effects of curcumin on chronic and acute myeloid leukemia cells has not yet been performed. In the present study, the cellular effects of curcumin on cell lines derived from chronic or acute myeloid leukemia were examined. Dose and time-response assays were performed with curcumin on HL-60 and K562 cells. Cell viability was evaluated with trypan blue exclusion test and cell death by flow cytometry using a fluorescent molecular probe. A cell cycle profile was analyzed, and protein markers of cell cycle progression and cell death were investigated. In the present study, the K562 cells showed a higher sensitivity to the cytostatic and cytotoxic effects of curcumin compared with HL-60. In addition, curcumin induced G1 phase arrest in HL-60 cells and G2/M phase arrest in K562 cells. Furthermore, curcumin-related cell death in HL-60 was associated with the processed forms of caspases-9 and -3 proteins, whereas in K562 cells, both the processed and the unprocessed forms were present. Accordingly, activity of these caspases was significantly higher in HL-60 cells compared with that in K562. In conclusion, curcumin elicits different cellular mechanisms in chronic or acute myeloid leukemia cells and the powerful antitumoral effect was more potent in K562 compared with HL-60 cells.
RESUMEN
The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.
Asunto(s)
Placenta/patología , Placenta/virología , Complicaciones Infecciosas del Embarazo/virología , Virosis/patología , Femenino , Humanos , EmbarazoRESUMEN
Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 µM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mitosis/efectos de los fármacosRESUMEN
The Aurora protein kinase (AURKA) and the Polo-like kinase-1 (PLK1) activate the cell cycle, and they are considered promising druggable targets in cancer therapy. However, resistance to chemotherapy and to specific smallmolecule inhibitors is common in cancer patients; thus alternative therapeutic approaches are needed to overcome clinical resistance. Here, we showed that the dietary compound resveratrol suppressed the cell cycle by targeting AURKA and PLK1 kinases. First, we identified genes modulated by resveratrol using a genome-wide analysis of gene expression in MDA-MB-231 breast cancer cells. Transcriptional profiling indicated that 375 genes were modulated at 24 h after resveratrol intervention, whereas 579 genes were regulated at 48 h. Of these, 290 genes were deregulated in common at 24 and 48 h. Interestingly, a significant decrease in the expression of genes involved in the cell cycle, DNA repair, cytoskeleton organization, and angiogenesis was detected. In particular, AURKA and PLK1 kinases were downregulated by resveratrol at 24 h. In addition the BRCA1 gene, an AURKA/PLK1 inhibitor, was upregulated at 24 h of treatment. Moreover, two well-known resveratrol effectors, cyclin D1 (CCND1) and cyclin B1 (CCNB1), were also repressed at both times. Congruently, we found that resveratrol impaired G1/S phase transition in both MDA-MB-231 and MCF-7 cells. By western blot assays, we confirmed that resveratrol suppressed AURKA, CCND1 and CCNB1 at 24 and 48 h. In summary, we showed for the first time that resveratrol regulates cell cycle progression by targeting AURKA and PLK1. Our findings highlight the potential use of resveratrol as an adjuvant therapy for breast cancer.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Estilbenos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ciclina B1/antagonistas & inhibidores , Ciclina D1/antagonistas & inhibidores , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Resveratrol , Transcriptoma/genética , Quinasa Tipo Polo 1RESUMEN
BACKGROUND: One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. METHODS: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. RESULTS: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. CONCLUSIONS: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.
Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Virus del Dengue/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas no Estructurales Virales/farmacología , Secuencia de Aminoácidos , Virus del Dengue/genética , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificaciónRESUMEN
The human papillomavirus type 16 (HPV-16) E6/E7 spliced transcripts are heterogeneously expressed in cervical carcinoma. The heterogeneity of the E6/E7 splicing profile might be in part due to the intrinsic variation of splicing factors in tumor cells. However, the splicing factors that bind the E6/E7 intron 1 (In-1) have not been defined. Therefore, we aimed to identify these factors; we used HeLa nuclear extracts (NE) for in vitro spliceosome assembly. The proteins were allowed to bind to an RNA/DNA hybrid formed by the In-1 transcript and a 5'-biotinylated DNA oligonucleotide complementary to the upstream exon sequence, which prevented interference in protein binding to the intron. The hybrid probes bound with the nuclear proteins were coupled to streptavidin magnetic beads for chromatography affinity purification. Proteins were eluted and identified by mass spectrometry (MS). Approximately 170 proteins were identified by MS, 80% of which were RNA binding proteins, including canonical spliceosome core components, helicases and regulatory splicing factors. The canonical factors were identified as components of the spliceosomal B-complex. Although 35-40 of the identified factors were cognate splicing factors or helicases, they have not been previously detected in spliceosome complexes that were assembled using in vivo or in vitro models.