Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38851213

RESUMEN

BACKGROUND: The removal of impacted lower third molars (ILTMs) is associated with bone defects in the distal area of second molars. Different methods have been described to minimize these defects. PURPOSE: The primary objective was to assess changes in probing depth (PD) over time (up to 36 months) between test (grafted) and control (ungrafted) groups; the graft was obtained from the extracted ILTM. STUDY DESIGN, SETTING, SAMPLE: This split-mouth randomized clinical trial was conducted at the Postgraduate Course in Oral Surgery of the Faculty of Dentistry of the Complutense University of Madrid. Adult patients requiring bilateral ILTM extraction with adjacent second molars were recruited, excluding pregnant/lactating women, patients in treatment with nonsteroidal anti-inflammatory drugs and patients with periodontal diseases. PREDICTOR/EXPOSURE/INDEPENDENT VARIABLE: The predictor variable was the graft technique. The bone defect after ILTM removal was treated with autogenous tooth graft (ATG) in the test group, leaving the control group ungrafted. MAIN OUTCOME VARIABLE: PD on the distobuccal, distomedial, and distolingual surfaces was recorded in both groups and averaged at baseline (T0), 3 (T1), 6 (T2), and 36 months (T3) postoperatively. COVARIATES: Sex, age, surgical time, ILTM situation and position between groups were assessed. ANALYSES: ANOVA repeated measures for comparisons between groups and the Friedman test for comparisons within the groups over time were applied. Statistical significance was established with a confidence interval of 95% (P < .05). RESULTS: The sample comprised 22 patients (6 males, 16 females) with a mean age of 21.68 ± 2.19 years; 44 ILTM extractions were performed. Statistically significant differences in PD average were found between groups (P < .001, 95% confidence interval) at 3 (1.63 ± 0.29), 6 (1.76 ± 0.3), and 36 months (1.74 ± 0.36). Reductions from T0 to T3 of 2.74 ± 0.28 (P < .001) and 0.54 ± 0.3 (P = .43) were observed in test and control groups, respectively. CONCLUSION AND RELEVANCE: ATG placed on the distal surface of lower second molars and almost completely filling the extraction socket improved PD 3, 6 and 36 months after ILTM. Furthermore, no significant changes in PD were observed over time; no major complications occurred. ATG appears to be a viable alternative graft material for this procedure.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790628

RESUMEN

Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, ß-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and ß-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases.

3.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38671892

RESUMEN

Peroxiredoxins (Prxs) and glutathione peroxidases (GPxs) are the main enzymes of the thiol-dependent antioxidant systems responsible for reducing the H2O2 produced via aerobic metabolism or parasitic organisms by the host organism. These antioxidant systems maintain a proper redox state in cells. The cysticerci of Taenia crassiceps tolerate millimolar concentrations of this oxidant. To understand the role played by Prxs in this cestode, two genes for Prxs, identified in the genome of Taenia solium (TsPrx1 and TsPrx3), were cloned. The sequence of the proteins suggests that both isoforms belong to the class of typical Prxs 2-Cys. In addition, TsPrx3 harbors a mitochondrial localization signal peptide and two motifs (-GGLG- and -YP-) associated with overoxidation. Our kinetic characterization assigns them as thioredoxin peroxidases (TPxs). While TsPrx1 and TsPrx3 exhibit the same catalytic efficiency, thioredoxin-glutathione reductase from T. crassiceps (TcTGR) was five and eight times higher. Additionally, the latter demonstrated a lower affinity (>30-fold) for H2O2 in comparison with TsPrx1 and TsPrx3. The TcTGR contains a Sec residue in its C-terminal, which confers additional peroxidase activity. The aforementioned aspect implies that TsPrx1 and TsPrx3 are catalytically active at low H2O2 concentrations, and the TcTGR acts at high H2O2 concentrations. These results may explain why the T. crassiceps cysticerci can tolerate high H2O2 concentrations.

4.
J Neurointerv Surg ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637151

RESUMEN

BACKGROUND: Cerebral edema (CED) is associated with poorer outcome in patients with acute ischemic stroke (AIS). The aim of the study was to investigate the factors contributing to greater early CED formation in patients with AIS who underwent endovascular therapy (EVT) and its association with functional outcome. METHODS: We conducted a multicenter cohort study of patients with an anterior circulation AIS undergoing EVT. The volume of cerebrospinal fluid (CSF) was extracted from baseline and 24-hour follow-up CT using an automated algorithm. The severity of CED was quantified by the percentage reduction in CSF volume between CT scans (∆CSF). The primary endpoint was a shift towards an unfavorable outcome, assessed by modified Rankin Scale (mRS) score at 3 months. Multivariable ordinal logistic regression analyses were performed. The ∆CSF threshold that predicted unfavorable outcome was selected using receiver operating characteristic curve analysis. RESULTS: We analyzed 201 patients (mean age 72.7 years, 47.8% women) in whom CED was assessable for 85.6%. Higher systolic blood pressure during EVT and failure to achieve modified Thrombolysis In Cerebral Infarction (mTICI) 3 were found to be independent predictors of greater CED. ∆CSF was independently associated with the probability of a one-point worsening in the mRS score (common odds ratio (cOR) 1.05, 95% CI 1.03 to 1.08) after adjusting for age, baseline mRS, National Institutes of Health Stroke Scale (NIHSS), and number of passes. Displacement of more than 25% of CSF was associated with an unfavorable outcome (OR 6.09, 95% CI 3.01 to 12.33) and mortality (OR 6.72, 95% CI 2.94 to 15.32). CONCLUSIONS: Early CED formation in patients undergoing EVT was affected by higher blood pressure and incomplete reperfusion. The extent of early CED, measured by automated ∆CSF, was associated with worse outcomes.

5.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38402026

RESUMEN

INTRODUCTION: Cardiovascular calcification is an important public health issue with an unmeet therapeutic need. We had previously shown that lysyl oxidase (LOX) activity critically influences vascular wall smooth muscle cells (VSMCs) and valvular interstitial cells (VICs) calcification by affecting extracellular matrix remodeling. We have delved into the participation of LOX in atherosclerosis and vascular calcification, as well as in the mineralization of the aortic valve. METHODS: Immunohistochemical and expression studies were carried out in human atherosclerotic lesions and experimental models, valves from patients with aortic stenosis, VICs, and in a genetically modified mouse model that overexpresses LOX in CMLV (TgLOXCMLV). Hyperlipemia and atherosclerosis was induced in mice through the administration of adeno-associated viruses encoding a PCSK9 mutated form (AAV-PCSK9D374Y) combined with an atherogenic diet. RESULTS: LOX expression is increased in the neointimal layer of atherosclerotic lesions from human coronary arteries and in VSMC-rich regions of atheromas developed both in the brachiocephalic artery of control (C57BL/6J) animals transduced with PCSK9D374Y and in the aortic root of ApoE-/- mice. In TgLOXCMLV mice, PCSK9D374Y transduction did not significantly alter the enhanced aortic expression of genes involved in matrix remodeling, inflammation, oxidative stress and osteoblastic differentiation. Likewise, LOX transgenesis did not alter the size or lipid content of atherosclerotic lesions in the aortic arch, brachiocephalic artery and aortic root, but exacerbated calcification. Among lysyl oxidase isoenzymes, LOX is the most expressed member of this family in highly calcified human valves, colocalizing with RUNX2 in VICs. The lower calcium deposition and decreased RUNX2 levels triggered by the overexpression of the nuclear receptor NOR-1 in VICs was associated with a reduction in LOX. CONCLUSIONS: Our results show that LOX expression is increased in atherosclerotic lesions, and that overexpression of this enzyme in VSMC does not affect the size of the atheroma or its lipid content, but it does affect its degree of calcification. Further, these data suggest that the decrease in calcification driven by NOR-1 in VICs would involve a reduction in LOX. These evidences support the interest of LOX as a therapeutic target in cardiovascular calcification.

6.
Eur J Neurol ; 31(2): e16112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909802

RESUMEN

BACKGROUND AND PURPOSE: In patients with acute ischaemic stroke (AIS), haemorrhagic transformation (HT) following endovascular treatment (EVT) is associated with poor functional outcome. However, the impact of asymptomatic HT, not linked to neurological deterioration in the acute phase, is unknown. We aimed to investigate the impact of asymptomatic PH1 (aPH1) and PH2 (aPH2) subtypes of HT on the functional outcome of patients treated with EVT. METHODS: We conducted a retrospective study of patients with AIS who were consecutively admitted to our comprehensive stroke centre between January 2019 and December 2022, and who underwent EVT. We collected clinical, radiological, and procedural data. HTs were categorized according to the Heidelberg classification. The primary outcome was the shift on the modified Rankin Scale (mRS) at 3 months of follow-up. We performed bivariate and multivariable ordinal regression analyses to test the association between aPH1/aPH2 and the primary outcome. RESULTS: We included 314 patients (mean age = 72.5 years [SD = 13.6], 171 [54.5%] women). We detected 54 (17.2%) patients with HT; 23 (7.3%) were classified as PH2 (11 asymptomatic) and 17 (5.4%) as PH1 (16 asymptomatic). The adjusted common odds ratio for aPH2 of worsening 1 point on the 3-month mRS was 3.32 (95% confidence interval = 1.16-9.57, p = 0.026). No association was observed for aPH1. aPH2 was also independently associated with lower odds of achieving a favourable outcome (mRS = 0-2). Neither aPH1 nor aPH2 was associated with mortality. CONCLUSIONS: In patients with AIS treated with EVT, aPH2 is independently associated with unfavourable functional outcome.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Masculino , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/cirugía , Isquemia Encefálica/complicaciones , Isquemia Encefálica/cirugía , Estudios Retrospectivos , Accidente Cerebrovascular Isquémico/complicaciones , Hemorragia/etiología , Procedimientos Endovasculares/efectos adversos , Resultado del Tratamiento , Trombectomía
7.
Transl Res ; 264: 1-14, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37690706

RESUMEN

Cardiovascular calcification is a significant public health issue whose pathophysiology is not fully understood. NOR-1 regulates critical processes in cardiovascular remodeling, but its contribution to ectopic calcification is unknown. NOR-1 was overexpressed in human calcific aortic valves and calcified atherosclerotic lesions colocalizing with RUNX2, a factor essential for osteochondrogenic differentiation and calcification. NOR-1 and osteogenic markers were upregulated in calcifying human valvular interstitial cells (VICs) and human vascular smooth muscle cells (VSMCs). Gain- and loss-of-function approaches demonstrated that NOR-1 negatively modulates the expression of osteogenic genes relevant for the osteogenic transdifferentiation (RUNX2, IL-6, BMP2, and ALPL) and calcification of VICs. VSMCs from transgenic mice overexpressing NOR-1 in these cells (TgNOR-1VSMC) expressed lower basal levels of osteogenic genes (IL-6, BMP2, ALPL, OPN) than cells from WT littermates, and their upregulation by a high-phosphate osteogenic medium (OM) was completely prevented by NOR-1 transgenesis. Consistently, this was associated with a dramatic reduction in the calcification of both transgenic VSMCs and aortic rings from TgNOR-1VSMC mice exposed to OM. Atherosclerosis and calcification were induce in mice by the administration of AAV-PCSK9D374Y and a high-fat/high-cholesterol diet. Challenged-TgNOR-1VSMC mice exhibited decreased vascular expression of osteogenic markers, and both less atherosclerotic burden (assessed in whole aorta and lesion size in aortic arch and brachiocephalic artery) and less vascular calcification (assessed either by near-infrared fluorescence imaging or histological analysis) than WT mice. Our data indicate that NOR-1 negatively modulates the expression of genes critically involved in the osteogenic differentiation of VICs and VSMCs, thereby restraining ectopic cardiovascular calcification.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcificación Vascular , Animales , Humanos , Ratones , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Interleucina-6/genética , Músculo Liso Vascular/fisiología , Osteogénesis/genética , Proproteína Convertasa 9/genética , Regulación hacia Arriba , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
8.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069339

RESUMEN

3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Mensajero Secundario , AMP Cíclico , Miocitos Cardíacos/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
9.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38061958

RESUMEN

INTRODUCTION: Cyclic nucleotide phosphodiesterases (PDEs) of the PDE4 subfamily are responsible for the hydrolysis and subcellular compartmentalization of cAMP, a second messenger that modulates vascular functionality. We had shown that PDE4B is induced in abdominal aortic aneurysms (AAA) and that PDE4 inhibition by rolipram limits experimental aneurysms. In this study we have delved into the mechanisms underlying the beneficial effect of rolipram on AAA. METHODS: AAA were induced in ApoE-/- mice by angiotensin II (Ang II) infusion. Aneurysm formation was evaluated by ultrasonography. The expression of enzymes involved in rédox homeostasis was analyzed by real-time RT-PCR and the activation of signaling pathways by Western blot. RESULTS: Induction of PDE4B in human AAA has been confirmed in a second cohort of patients. In Ang II-infused ApoE-/- mice, rolipram increased the percentage of animals free of aneurysms without affecting the percentage of aortic ruptures. Quantitative analyses determined that this drug significantly attenuated aortic collagen deposition. Additionally, rolipram reduced the increased Nox2 expression triggered by Ang II, exacerbated Sod1 induction, and normalized Sod3 expression. Likewise, PDE4 inhibition decreased the activation of both ERK1/2 and the canonical Wnt pathway, while AKT activity was not altered. CONCLUSIONS: The inhibition of PDE4 activity modulates the expression of enzymes involved in rédox homeostasis and affects cell signaling pathways involved in the development of AAA.

10.
Biomed Pharmacother ; 167: 115469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729730

RESUMEN

Extracellular matrix (ECM) is an active player in cardiovascular calcification (CVC), a major public health issue with an unmet need for effective therapies. Lysyl oxidase (LOX) conditions ECM biomechanical properties; thus, we hypothesized that LOX might impact on mineral deposition in calcific aortic valve disease (CAVD) and atherosclerosis. LOX was upregulated in calcified valves from two cohorts of CAVD patients. Strong LOX immunostaining was detected surrounding calcified foci in calcified human valves and atherosclerotic lesions colocalizing with RUNX2 on valvular interstitial cells (VICs) or vascular smooth muscle cells (VSMCs). Both LOX secretion and organized collagen deposition were enhanced in calcifying VICs exposed to osteogenic media. ß-aminopropionitrile (BAPN), an inhibitor of LOX, attenuated collagen deposition and calcification. VICs seeded onto decellularized matrices from BAPN-treated VICs calcified less than cells cultured onto control scaffolds; instead, VICs exposed to conditioned media from cells over-expressing LOX or cultured onto LOX-crosslinked matrices calcified more. Atherosclerosis was induced in WT and transgenic mice that overexpress LOX in VSMC (TgLOXVSMC) by AAV-PCSK9D374Y injection and high-fat feeding. In atherosclerosis-challenged TgLOXVSMC mice both atherosclerosis burden and calcification assessed by near-infrared fluorescence (NIRF) imaging were higher than in WT mice. These animals also exhibited larger calcified areas in atherosclerotic lesions from aortic arches and brachiocephalic arteries. Moreover, LOX transgenesis exacerbated plaque inflammation, and increased VSMC cellularity, the rate of RUNX2-positive cells and both connective tissue content and collagen cross-linking. Our findings highlight the relevance of LOX in CVC and postulate this enzyme as a potential therapeutic target for CVC.

11.
Chem Commun (Camb) ; 59(82): 12231-12247, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37750291

RESUMEN

Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals.

12.
Clin Sci (Lond) ; 137(15): 1167-1194, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37559446

RESUMEN

Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Rotura de la Aorta , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/patología , Aorta Abdominal/patología , Doxiciclina/uso terapéutico , Rotura de la Aorta/tratamiento farmacológico , Rotura de la Aorta/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
14.
Cereb Circ Cogn Behav ; 5: 100171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457664

RESUMEN

Alzheimer's disease is the commonest form of dementia. It is likely that a lack of clearance of amyloid beta (Aß) results in its accumulation in the parenchyma as Aß oligomers and insoluble plaques, and within the walls of blood vessels as cerebral amyloid angiopathy (CAA). The drainage of Aß along the basement membranes of blood vessels as intramural periarterial drainage (IPAD), could be improved if the driving force behind IPAD could be augmented, therefore reducing Aß accumulation. There are alterations in the composition of the vascular basement membrane in Alzheimer's disease. Lysyl oxidase (LOX) is an enzyme involved in the remodelling of the extracellular matrix and its expression and function is altered in various disease states. The expression of LOX is increased in Alzheimer's disease, but it is unclear whether this is a contributory factor in the impairment of IPAD in Alzheimer's disease. The pharmacological inhibition of LOX may be a strategy to improve IPAD and reduce the accumulation of Aß in the parenchyma and within the walls of blood vessels.

15.
Sci Adv ; 9(30): eadh9393, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494446

RESUMEN

Blue phase (BP) liquid crystals are chiral fluids wherein millions of molecules self-assemble into cubic lattices that are on the order of hundred nanometers. As the unit cell sizes of BPs are comparable to the wavelength of light, they exhibit selective Bragg reflections in the visible. The exploitation of the photonic properties of BPs for technological applications is made possible through photopolymerization, a process that renders mechanical robustness and thermal stability. We review here the preparation and characterization of stimuli-responsive, polymeric photonic crystals based on BPs. We highlight recent studies that demonstrate the promise that polymerized BP photonic crystals hold for colorimetric sensing and dynamic light control. We review using Landau-de Gennes simulations for predicting the self-assembly of BPs and the potential for using theory to guide experimental design. Finally, opportunities for using BPs to synthesize new soft materials, such as highly structured polymer meshes, are discussed.

16.
Soft Matter ; 19(31): 5916-5924, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485668

RESUMEN

In this work we present the results of Monte Carlo (MC) simulations at the isothermal-isobaric ensemble for a discotic liquid crystal (DLC) droplet whose surface promotes edge-on (planar) anchoring. For a given pressure, we simulate an annealing process that enables observation of phase transitions within the spherical droplet. In particular, we report a first order isotropic-nematic transition as well as a nematic-columnar transition at the center of the droplet. We found the appearance of topological defects consisting of two disclination lines with ends at the surface of the sphere. We also observed that both transitions, isotropic-nematic and nematic-columnar, occur at lower temperatures as compared to the unconfined system.

17.
J Phys Chem A ; 127(19): 4363-4374, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37134300

RESUMEN

Chemical Reaction Networks (CRNs) are stochastic many-body systems used to model real-world chemical systems through a differential Master Equation (ME); analytical solutions to these equations are only known for the simplest systems. In this paper, we construct a path-integral inspirited framework for studying CRNs. Under this scheme, the time-evolution of a reaction network can be encoded in a Hamiltonian-like operator. This operator yields a probability distribution which can be sampled, using Monte Carlo Methods, to generate exact numerical simulations of a reaction network. We recover the grand probability function used in the Gillespie Algorithm as an approximation to our probability distribution, which motivates the addition of a leapfrog correction step. To assess the utility of our method in forecasting real-world phenomena, and to contrast it with the Gillespie Algorithm, we simulated a COVID-19 epidemiological model using parameters from the United States for the Original Strain and the Alpha, Delta and Omicron Variants. By comparing the results of these simulations with official data, we found that our model closely agrees with the measured population dynamics, and given the generality of this framework it can also be applied to study the spread dynamics of other contagious diseases.

18.
J Chem Phys ; 158(18)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37154281

RESUMEN

By using time-of-flight neutron spectroscopy with polarization analysis, we have separated coherent and incoherent contributions to the scattering of deuterated tetrahydrofuran in a wide scattering vector (Q)-range from meso- to inter-molecular length scales. The results are compared with those recently reported for water to address the influence of the nature of inter-molecular interactions (van der Waals vs hydrogen bond) on the dynamics. The phenomenology found is qualitatively similar in both systems. Both collective and self-scattering functions are satisfactorily described in terms of a convolution model that considers vibrations, diffusion, and a Q-independent mode. We observe a crossover in the structural relaxation from being dominated by the Q-independent mode at the mesoscale to being dominated by diffusion at inter-molecular length scales. The characteristic time of the Q-independent mode is the same for collective and self-motions and, contrary to water, faster and with a lower activation energy (≈1.4 Kcal/mol) than the structural relaxation time at inter-molecular length scales. This follows the macroscopic viscosity behavior. The collective diffusive time is well described by the de Gennes narrowing relation proposed for simple monoatomic liquids in a wide Q-range entering the intermediate length scales, in contraposition to the case of water.

19.
Br J Pharmacol ; 180(17): 2230-2249, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36964990

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial dysfunction and inflammation contribute to a myriad of cardiovascular diseases. Deleterious crosstalk of mitochondria and persistent endoplasmic reticulum (ER) stress triggers oxidative stress, which is involved in the development of vascular diseases. This study determined if inhibition of mitochondrial stress reduces aneurysm development in angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE-/- ) mice and its effect on ER stress. EXPERIMENTAL APPROACH: The mitochondria-targeted tetrapeptide, Szeto-Schiller 31 (SS31), ameliorated mitochondrial dysfunction and the enhanced expression of ER stress markers triggered by Ang II in ApoE-/- mice, and limited plasmatic and vascular reactive oxygen species (ROS) levels. Interestingly, SS31 improved survival, reduced the incidence and severity of abdominal aortic aneurysm (AAA), and the Ang II-induced increase in aortic diameter as evaluated by ultrasonography, resembling the response triggered by the classic ER stress inhibitors tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (PBA). KEY RESULTS: Disorganization of the extracellular matrix, increased expression of metalloproteinases and pro-inflammatory markers and infiltration of immune cells induced by Ang II in the abdominal aorta were effectively reduced by SS31 and ER inhibitors. Further, C/EBP homologous protein (CHOP) deficiency in ApoE-/- mice attenuated Ang II-mediated increase in vascular diameter and incidence of AAA, suggesting its contribution to the favourable response induced by ER stress inhibition. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that inhibition of mitochondrial stress by SS31 limits AAA formation and increases survival through a reduction of vascular remodelling, inflammation and ROS, and support that attenuation of ER stress contributes to the favourable response elicited by SS31.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/metabolismo , Aorta Abdominal , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Apolipoproteínas E/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Angiotensina II/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Biol Sex Differ ; 14(1): 14, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966335

RESUMEN

BACKGROUND: Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS: To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS: Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS: Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neuronas , Sed , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/genética , Peso Corporal , Ácidos Grasos/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Ingestión de Alimentos , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA