RESUMEN
Inspired by nature, the development of artificial micro/nanosystems capable of communicating has become an emergent topic in nanotechnology, synthetic biology, and related areas. However, the demonstration of actual applications still has to come. Here, we demonstrate how chemical communication between micro- and nanoparticles can be used for the design of sensing systems. To realize this, we synergistically combine two different types of particles: i.e., giant unilamellar vesicles (GUVs) as senders and gated mesoporous nanoparticles as receivers. The use of engineered GUVs allows the detection of analytes based on responsive membranes, while the use of gated nanoparticles allows a straightforward application on test strips with smartphone-based detection. In addition, we demonstrate that the combined communication system exhibits signal amplification and its application in real samples employing the bacterial toxin α-hemolysin as target analyte. Altogether, our report presents a new route for engineering sensing systems based on the combination of communicative micro/nanoparticles.
RESUMEN
The spatiotemporal orchestration of cellular processes is a ubiquitous phenomenon in pluricellular organisms and bacterial communities, where sender cells secrete chemical signals that activate specific pathways in distant receivers. Despite its importance, the engineering and investigation of spatiotemporal communication in artificial cell consortia remains underexplored. In this study, we present spatiotemporal communication between cellular-scale entities acting as both senders and receivers. The transmitted signals are leveraged to elicit conformational alterations within compartmentalized DNA structures. Specifically, sender entities control and generate diffusive chemical signals, namely, variations in pH, through the conversion of biomolecular inputs. In the receiver population, compartmentalized DNA nanostructures exhibit changes in conformation, transitioning between triplex and duplex assemblies, in response to this pH variation. We demonstrate the temporal regulation of activated DNA nanostructures through the coordinated action of two antagonistic sender populations. Furthermore, we illustrate the transient distance-dependent activation of the receivers, facilitated by sender populations situated at defined spatial locations. Collectively, our findings provide novel avenues for the design of artificial cell consortia endowed with programmable spatiotemporal dynamics through chemical communication.
RESUMEN
Molecular cages are three-dimensional supramolecular structures that completely wrap guest molecules by encapsulation. We describe a rare comparative study between a metallo-organic cage and a fully organic analogous system, obtained by hydrazone bond formation self-assembly. Both cages are able to encapsulate the anticancer drug doxorubicin, with the organic cage forming a 1 : 1 inclusion complex with µM affinity, whereas the metallo-organic host experiences disassembly by interaction with the drug. Stability experiments reveal that the ligands of the metallo-organic cage are displaced in buffer at neutral, acidic, and basic pH, while the organic cage only disassembles under acidic conditions. Notably, the organic cage also shows minimal cell toxicity, even at high doses, whilst the doxorubicin-cage complex shows in vitro anti-cancer activity. Collectively, these results show that the attributes of the pure organic molecular cage are suitable for the future challenges of in vivo drug delivery using molecular cages.
RESUMEN
Senescence is a cellular response having physiological and reparative functions to preserve tissue homeostasis and suppress tumor growth. However, the accumulation of senescent cells would cause deleterious effects that lead to age-related dysfunctions and cancer progression. Hence, selective detection and elimination of senescent cells are crucial yet remain a challenge. A ß-galactosidase (ß-gal)-activated boron dipyrromethene (BODIPY)-based photosensitizer (compound 1) is reported here that can selectively detect and eradicate senescent cells. It contains a galactose moiety connected to a pyridinium BODIPY via a self-immolative nitrophenylene linker, of which the photoactivity is effectively quenched. Upon interactions with the senescence-associated ß-gal, it undergoes enzymatic hydrolysis followed by self-immolation, leading to the release of an activated BODIPY moiety by which the fluorescence emission and singlet oxygen generation are restored. The ability of 1 to detect and eliminate senescent cells is demonstrated in vitro and in vivo, using SK-Mel-103 tumor-bearing mice treated with senescence-inducing therapy. The results demonstrate that 1 can be selectively activated in senescent cells to trigger a robust senolytic effect upon irradiation. This study breaks new ground in the design and application of new senolytic agents based on photodynamic therapy.
Asunto(s)
Senescencia Celular , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfobilinógeno , beta-Galactosidasa , beta-Galactosidasa/metabolismo , Senescencia Celular/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Animales , Ratones , Fotoquimioterapia/métodos , Humanos , Porfobilinógeno/análogos & derivados , Porfobilinógeno/farmacología , Porfobilinógeno/química , Compuestos de Boro/farmacología , Compuestos de Boro/química , Modelos Animales de Enfermedad , Línea Celular TumoralRESUMEN
Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells.
Asunto(s)
Doxorrubicina , Enzimas Inmovilizadas , Glucosa Oxidasa , Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Humanos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/química , Porosidad , Nanopartículas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Propiedades de Superficie , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Portadores de Fármacos/química , Gluconatos/química , Rayos Infrarrojos , Peróxido de Hidrógeno/químicaRESUMEN
Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide ε-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.
Asunto(s)
Acroleína , Acroleína/análogos & derivados , Antiinfecciosos , Candida albicans , Escherichia coli , Nanopartículas , Dióxido de Silicio , Staphylococcus aureus , Acroleína/farmacología , Acroleína/química , Nanopartículas/química , Escherichia coli/efectos de los fármacos , Candida albicans/efectos de los fármacos , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Staphylococcus aureus/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/administración & dosificación , Porosidad , Pruebas de Sensibilidad Microbiana , Polilisina/química , Polilisina/farmacologíaRESUMEN
Cellular senescence can be defined as an irreversible stopping of cell proliferation that arises in response to various stress signals. Cellular senescence is involved in diverse physiological and pathological processes in different tissues, exerting effects on processes as differentiated as embryogenesis, tissue repair and remodeling, cancer, aging, and tissue fibrosis. In addition, the development of some pathologies, aging, cancer, and other age-related diseases has been related to senescent cell accumulation. Due to the complexity of the senescence phenotype, targeting senescent cells is not trivial, is challenging, and is especially relevant for in vivo detection in age-related diseases and tissue samples. Despite the elimination of senescent cells (senolysis) using specific drugs (senolytics) that have been shown to be effective in numerous preclinical disease models, the clinical translation is still limited due to the off-target effects of current senolytics and associated toxicities. Therefore, the development of new chemical strategies aimed at detecting and eliminating senescent cells for the prevention and selective treatment of senescence-associated diseases is of great interest. Such strategies not only will contribute to a deeper understanding of this rapidly evolving field but also will delineate and inspire new possibilities for future research.In this Account, we report our recent research in the development of new chemical approaches for the detection and elimination of senescent cells based on new probes, nanoparticles, and prodrugs. The designed systems take advantage of the over-representation in senescent cells of certain biomarkers such as ß-galactosidase and lipofuscin. One- and two-photon probes, for higher tissue penetration, have been developed. Moreover, we also present a renal clearable fluorogenic probe for the in vivo detection of the ß-galactosidase activity, allowing for correlation with the senescent burden in living animals. Moreover, as an alternative to molecular-based probes, we also developed nanoparticles for senescence detection. Besides, we describe advances in new therapeutic agents to selectively eradicate senescent cells using ß-galactosidase activity-sensitive gated nanoparticles loaded with cytotoxic or senolytic agents or new prodrugs aiming to increase the selectivity and reduction of off-target toxicities of current drugs. Moreover, new advances therapies have been applied in vitro and in vivo. Studies with the probes, nanoparticles, and prodrugs have been applied in several in vitro and in vivo models of cancer, fibrosis, aging, and drug-induced cardiotoxicity in which senescence plays an important role. We discuss the benefits of these chemical strategies toward the development of more specific and sophisticated probes, nanoparticles, and prodrugs targeting senescent cells.
Asunto(s)
Senescencia Celular , Senescencia Celular/efectos de los fármacos , Humanos , Animales , Senoterapéuticos/farmacología , Senoterapéuticos/química , beta-Galactosidasa/metabolismoRESUMEN
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host-guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages' anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications.
Asunto(s)
Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Polietilenglicoles , AguaRESUMEN
Engineering chemical communication between micro/nanosystems (via the exchange of chemical messengers) is receiving increasing attention from the scientific community. Although a number of micro- and nanodevices (e.g., drug carriers, sensors, and artificial cells) have been developed in the last decades, engineering communication at the micro/nanoscale is a recent emergent topic. In fact, most of the studies in this research area have been published within the last 10 years. Inspired by natureâwhere information is exchanged by means of moleculesâthe development of chemical communication strategies holds wide implications as it may provide breakthroughs in many areas including nanotechnology, artificial cell research, biomedicine, biotechnology, and ICT. Published examples rely on nanotechnology and synthetic biology for the creation of micro- and nanodevices that can communicate. Communication enables the construction of new complex systems capable of performing advanced coordinated tasks that go beyond those carried out by individual entities. In addition, the possibility to communicate between synthetic and living systems can further advance our understanding of biochemical processes and provide completely new tailored therapeutic and diagnostic strategies, ways to tune cellular behavior, and new biotechnological tools. In this Account, we summarize advances by our laboratories (and others) in the engineering of chemical communication of micro- and nanoparticles. This Account is structured to provide researchers from different fields with general strategies and common ground for the rational design of future communication networks at the micro/nanoscale. First, we cover the basis of and describe enabling technologies to engineer particles with communication capabilities. Next, we rationalize general models of chemical communication. These models vary from simple linear communication (transmission of information between two points) to more complex pathways such as interactive communication and multicomponent communication (involving several entities). Using illustrative experimental designs, we demonstrate the realization of these models which involve communication not only between engineered micro/nanoparticles but also between particles and living systems. Finally, we discuss the current state of the topic and the future challenges to be addressed.
Asunto(s)
Nanopartículas , Nanotecnología , Biotecnología , ProteínasRESUMEN
Primary Open-Angle Glaucoma (POAG) is the most prevalent glaucoma type, and the leading cause of irreversible visual impairment and blindness worldwide. Identification of early POAG biomarkers is of enormous value, as there is not an effective treatment for the glaucomatous optic nerve degeneration (OND). In this pilot study, a metabolomic analysis, by using proton (1H) nuclear magnetic resonance (NMR) spectroscopy was conducted in tears, in order to determine the changes of specific metabolites in the initial glaucoma eyes and to discover potential diagnostic biomarkers. A classification model, based on the metabolomic fingerprint in tears was generated as a non-invasive tool to support the preclinical and clinical POAG diagnosis. 1H NMR spectra were acquired from 30 tear samples corresponding to the POAG group (n = 11) and the control group (n = 19). Data were analysed by multivariate statistics (partial least squares-discriminant analysis: PLS-DA) to determine a model capable of differentiating between groups. The whole data set was split into calibration (65%)/validation (35%), to test the performance and the ability for glaucoma discrimination. The calculated PLS-DA model showed an area under the curve (AUC) of 1, as well as a sensitivity of 100% and a specificity of 83.3% to distinguish POAG group versus control group tear data. This model included 11 metabolites, potential biomarkers of the disease. When comparing the study groups, a decrease in the tear concentration of phenylalanine, phenylacetate, leucine, n-acetylated compounds, formic acid, and uridine, was found in the POAG group. Moreover, an increase in the tear concentration of taurine, glycine, urea, glucose, and unsaturated fatty acids was observed in the POAG group. These results highlight the potential of tear metabolomics by 1H NMR spectroscopy as a non-invasive approach to support early POAG diagnosis and in order to prevent visual loss.
Asunto(s)
Glaucoma de Ángulo Abierto , Humanos , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Proyectos Piloto , Metabolómica , Biomarcadores , TaurinaRESUMEN
Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.
Asunto(s)
Curcumina , Nanopartículas , Fotoquimioterapia , Polimixina B/farmacología , Curcumina/farmacología , Dióxido de Silicio/farmacología , Escherichia coli , Biopelículas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosaRESUMEN
Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for ß-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, ß-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.
Asunto(s)
Envejecimiento , Senescencia Celular , Masculino , Femenino , Ratones , Animales , Envejecimiento/fisiología , Senescencia Celular/fisiología , beta-Galactosidasa , Riñón , Colorantes FluorescentesRESUMEN
Cellular senescence is implicated in the occurrence and progression of multiple age-related disorders. In this context, the selective elimination of senescent cells, senolysis, has emerged as an effective therapeutic strategy. However, the heterogeneous senescent phenotype hinders the discovery of a universal and robust senescence biomarker that limits the effective of senolytic with off-target toxic effects. Therefore, the development of more selective strategies represents a promising approach to increase the specificity of senolytic therapy. In this study, we have developed an innovative nanodevice for the selective elimination of senescent cells (SCs) based on the specific enzymatic activity of the senescent secretome. The results revealed that when senescence is induced in proliferating WI-38 by ionizing radiation (IR), the cells secrete high levels of matrix metalloproteinase-3 (MMP-3). Based on this result, mesoporous silica nanoparticles (MSNs) were loaded with the senolytic navitoclax (Nav) and coated with a specific peptide which is substrate of MMP-3 (NPs(Nav)@MMP-3). Studies in cells confirmed the preferential release of cargo in IR-induced senescent cells compared to proliferating cells, depending on MMP-3 levels. Moreover, treatment with NPs(Nav)@MMP-3 induced a selective decrease in the viability of SCs as well as a protective effect on non-proliferating cells. These results demonstrate the potential use of NPs to develop enhanced senolytic therapies based on specific enzymatic activity in the senescent microenvironment, with potential clinical relevance. STATEMENT OF SIGNIFICANCE: The common ß-galactosidase activity has been exploited to develop nanoparticles for the selective elimination of senescent cells. However, the identification of new senescent biomarkers is a key factor for the development of improved strategies. In this scenario, we report for the first time the development of NPs targeting senescent cells based on specific enzymatic activity of the senescent secretome. We report a navitoclax-loaded nanodevice responsive to the matrix metalloproteinase-3 (MMP-3) associated with the senescent phenotype. Our nanosystem achieves the selective release of navitoclax in an MMP-3-dependent manner while limiting off-target effects on non-senescent cells. This opens the possibility of using nanoparticles able to detect an altered senescent environment and selectively release its content, thus enhancing the efficacy of senolytic therapies.
Asunto(s)
Metaloproteinasa 3 de la Matriz , Senoterapéuticos , Sulfonamidas , Senescencia Celular , Compuestos de Anilina/farmacología , BiomarcadoresRESUMEN
Antimicrobial resistance is a current silent pandemic that needs new types of antimicrobial agents different from the classic antibiotics that are known to lose efficiency over time. Encapsulation of antibiotics inside nano-delivery systems could be a promising, effective strategy that is able to delay the capability of pathogens to develop resistance mechanisms against antimicrobials. These systems can be adapted to deliver already discovered antibiotics to specific infection sites in a more successful way. Herein, mesoporous silica nanomaterials are used for an efficient delivery of a linezolid gram-positive antibiotic that acts synergistically with gram-negative antimicrobial polymyxin B. For this purpose, linezolid is encapsulated in the pores of the mesoporous silica, whose outer surface is coated with a polymyxin B membrane disruptor. The nanomaterial showed a good controlled-release performance in the presence of lipopolysaccharide, found in bacteria cell membranes, and the complete bacteria E. coli DH5α. The performed studies demonstrate that when the novel formulation is near bacteria, polymyxin B interacts with the cell membrane, thereby promoting its permeation. After this step, linezolid can easily penetrate the bacteria and act with efficacy to kill the microorganism. The nano-delivery system presents a highly increased antimicrobial efficacy against gram-negative bacteria, where the use of free linezolid is not effective, with a fractional inhibitory concentration index of 0.0063 for E. coli. Moreover, enhanced toxicity against gram-positive bacteria was confirmed thanks to the combination of both antibiotics in the same nanoparticles. Although this new nanomaterial should be further studied to reach clinical practice, the obtained results pave the way to the development of new nanoformulations which could help in the fight against bacterial infections.
RESUMEN
Senescent cells have become an important therapeutic target for many age-related dysfunctions and diseases. We report herein a novel nanophotosensitizing system that is responsive to the senescence-associated ß-galactosidase (ß-gal) for selective detection and elimination of these cells. It involves a dimeric zinc(II) phthalocyanine linked to a ß-galactose unit via a self-immolative linker. This compound can self-assemble in aqueous media, forming stable nanoscale particles in which the phthalocyanine units are stacked and self-quenched for fluorescence emission and singlet oxygen production. Upon internalization into senescent HeLa cells, these nanoparticles interact with the overproduced senescence-associated ß-gal inside the cells to trigger the disassembly process through enzymatic cleavage of the glycosidic bonds, followed by self-immolation to release the photoactive monomeric phthalocyanine units. These senescent cells can then be lit up with fluorescence and eliminated through the photodynamic action upon light irradiation with a half-maximal inhibitory concentration of 0.06 µM.
Asunto(s)
Fotoquimioterapia , Humanos , Células HeLa , Fluorescencia , beta-Galactosidasa , Indoles/farmacología , Indoles/química , Senescencia CelularRESUMEN
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.
Asunto(s)
Nanopartículas , Nanotubos de Carbono , Humanos , Células HeLa , Dióxido de Silicio/toxicidad , Nanopartículas/toxicidad , Polietilenglicoles , PorosidadRESUMEN
Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.
This article presents a couple of promising nanoparticles for the treatment of brain cancer. This research is interesting because the brain and spinal cord are protected by a membrane that prevents toxic substances from reaching them but also hinders the access of drugs. One type of particle has a magnet in its core, so it can be driven with another external magnet until it reaches target; the other type does not have a magnet but has a small size, which would allow it to cross the membrane mentioned above. These particles have been proven to be able to kill cancer cells and to reach the brain after been administered through the nose in a better way than the free drug.
Asunto(s)
Portadores de Fármacos , Nanopartículas , Administración Intranasal , Encéfalo , Dióxido de Silicio , Sistemas de Liberación de Medicamentos/métodos , PorosidadRESUMEN
This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions. PHOTONGATE relies on two core technologies: a biochemical technology (molecular gates), which will confer the specificity and, therefore, the capability to be adaptable to the analyte of interest, and which, combined with porous substrates, will increase the sensitivity, and a photonic technology based on localized surface plasmonic resonance (LSPR) structures that serve as transducers for light interaction. Both technologies are in the micron range, facilitating the integration of multiple sensors within a small area (mm2). The concept will be developed for its application in health diagnosis and food safety sectors. It is thought of as an easy-to-use modular concept, which will consist of the sensing module, mainly of a microfluidics cartridge that will house the photonic sensor, and a platform for fluidic handling, optical interrogation, and signal processing. The platform will include a new optical concept, which is fully European Union Made, avoiding optical fibers and expensive optical components.
Asunto(s)
Metales , Resonancia por Plasmón de Superficie , Metales/química , Óptica y Fotónica , Bacterias , Fibras ÓpticasRESUMEN
Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.
Asunto(s)
Ambystoma mexicanum , Senescencia Celular , Animales , Ambystoma mexicanum/metabolismo , Vía de Señalización Wnt , Células Madre , Proliferación Celular , ExtremidadesRESUMEN
Alzheimer's disease is the most common type of dementia in the elderly. It is a progressive degenerative disorder that may begin to develop up to 15 years before clinical symptoms appear. The identification of early biomarkers is crucial to enable a prompt diagnosis and to start effective interventions. In this work, we conducted a metabolomic study using proton Nuclear Magnetic Resonance (1H NMR) spectroscopy in serum samples from patients with neuropathologically confirmed Alzheimer's disease (AD, n = 51), mild cognitive impairment (MCI, n = 27), and cognitively healthy controls (HC, n = 50) to search for metabolites that could be used as biomarkers. Patients and controls underwent yearly clinical follow-ups for up to six years. MCI group included samples from three subgroups of subjects with different disease progression rates. The first subgroup included subjects that remained clinically stable at the MCI stage during the period of study (stable MCI, S-MCI, n = 9). The second subgroup accounted for subjects which were diagnosed with MCI at the moment of blood extraction, but progressed to clinical dementia in subsequent years (MCI-to-dementia, MCI-D, n = 14). The last subgroup was composed of subjects that had been diagnosed as dementia for the first time at the moment of sample collection (incipient dementia, Incp-D, n = 4). Partial Least Square Discriminant Analysis (PLS-DA) models were developed. Three models were obtained, one to discriminate between AD and HC samples with high sensitivity (93.75%) and specificity (94.75%), another model to discriminate between AD and MCI samples (100% sensitivity and 82.35% specificity), and a last model to discriminate HC and MCI with lower sensitivity and specificity (67% and 50%). Differences within the MCI group were further studied in an attempt to determine those MCI subjects that could develop AD-type dementia in the future. The relative concentration of metabolites, and metabolic pathways were studied. Alterations in the pathways of alanine, aspartate and glutamate metabolism, pantothenate and CoA biosynthesis, and beta-alanine metabolism, were found when HC and MCI- D patients were compared. In contrast, no pathway was found disturbed in the comparison of S-MCI with HC groups. These results highlight the potential of 1H NMR metabolomics to support the diagnosis of dementia in a less invasive way, and set a starting point for the study of potential biomarkers to identify MCI or HC subjects at risk of developing AD in the future.