Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785693

RESUMEN

Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate.


Asunto(s)
Técnicas Biosensibles , Calcio , Larva , Contracción Miocárdica , Pez Cebra , Animales , Calcio/metabolismo , Contracción Miocárdica/fisiología , Corazón/fisiología , Troponina T/metabolismo , Proteínas de Pez Cebra/metabolismo , Troponina C/metabolismo
2.
Acta Physiol (Oxf) ; 240(2): e14075, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071417

RESUMEN

AIM: Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS: Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS: ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION: ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.


Asunto(s)
Bloqueo Atrioventricular , Canales de Calcio Tipo T , Marcapaso Artificial , Humanos , Animales , Pez Cebra , Frecuencia Cardíaca/fisiología , Bradicardia , Canales de Calcio Tipo T/fisiología , Canales de Potasio Éter-A-Go-Go , Miocitos Cardíacos , Mamíferos , Regulador Transcripcional ERG
3.
Methods Mol Biol ; 2524: 271-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821478

RESUMEN

We introduce how to image calcium ion levels in the heart of zebrafish embryos and larvae up to 5 days post-fertilization with the photoprotein green fluorescent protein (GFP)-aequorin (GA) in the transgenic line Tg(myl7:GA). Incubation of the embryos with CTZ to obtain the functional photoprotein yields few emission counts, suggesting that, when the heart is beating, the rate of aequorin consumption is faster than that of the reconstitution with CTZ. In this chapter, we present an improved aequorin reconstitution protocol. We further describe the experimental procedure as well as the bioluminescence data analysis and processing.


Asunto(s)
Aequorina , Pez Cebra , Aequorina/genética , Aequorina/metabolismo , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Iones/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pez Cebra/metabolismo
4.
Theranostics ; 12(3): 1012-1029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154472

RESUMEN

In vivo models of cardiac function maintain the complex relationship of cardiomyocytes with other heart cells, as well as the paracrine and mechanoelectrical feedback mechanisms. We aimed at imaging calcium transients simultaneously with heart contraction in zebrafish larvae. Methods: To image calcium in beating hearts, we generated a zebrafish transgenic line expressing the FRET-based ratiometric biosensor Twitch-4. Since emission ratioing canceled out the motion artifacts, we did not use myosin inhibitors or tnnt2a morpholinos to uncouple contraction from changes in calcium levels. We wrote an analysis program to automatically calculate kinetic parameters of the calcium transients. In addition, the ventricular diameter was determined in the fluorescence images providing a real-time measurement of contraction correlated with calcium. Results: Expression of Twitch-4 did not affect the force of contraction, the size of the heart nor the heart rate in 3- and 5-days post-fertilization (dpf) larvae. Comparison of 3 and 5 dpf larvae showed that calcium levels and transient amplitude were larger at 5 dpf, but the fractional shortening did not change. To validate the model, we evaluated the effect of drugs with known effects on cardiomyocytes. Calcium levels and the force of contraction decreased by the L-type calcium channel blocker nifedipine, whereas they increased with the activator Bay-K 8644. Caffeine induced bradycardia, markedly decreased ventricular diastolic calcium levels, increased the size of the calcium transients, and caused an escape rhythm in some larvae. Conclusions: The Tg(myl7:Twitch-4) line provides a physiological approach to image systolic and diastolic calcium levels in the heart of zebrafish larvae. Since the heart is beating, calcium levels and contraction can be correlated. This line will be a useful tool to address pathophysiological mechanisms in diseases like heart failure and arrhythmia, in cardiotoxicity studies and for drug screening.


Asunto(s)
Calcio , Pez Cebra , Animales , Calcio/metabolismo , Corazón/diagnóstico por imagen , Larva/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Pez Cebra/metabolismo
5.
Biomedicines ; 9(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34680411

RESUMEN

Zebrafish embryos and larvae have emerged as an excellent model in cardiovascular research and are amenable to live imaging with genetically encoded biosensors to study cardiac cell behaviours, including calcium dynamics. To monitor calcium ion levels in three to five days post-fertilization larvae, we have used bioluminescence. We generated a transgenic line expressing GFP-aequorin in the heart, Tg(myl7:GA), and optimized a reconstitution protocol to boost aequorin luminescence. The analogue diacetylh-coelenterazine enhanced light output and signal-to-noise ratio. With this cardioluminescence model, we imaged the time-averaged calcium levels and beat-to-beat calcium oscillations continuously for hours. As a proof-of-concept of the transgenic line, changes in ventricular calcium levels were observed by Bay K8644, an L-type calcium channel activator and with the blocker nifedipine. The ß-adrenergic blocker propranolol decreased calcium levels, heart rate, stroke volume, and cardiac output, suggesting that larvae have a basal adrenergic tone. Zebrafish larvae treated with terfenadine for 24 h have been proposed as a model of heart failure. Tg(myl7:GA) larvae treated with terfenadine showed bradycardia, 2:1 atrioventricular block, decreased time-averaged ventricular calcium levels but increased calcium transient amplitude, and reduced cardiac output. As alterations of calcium signalling are involved in the pathogenesis of heart failure and arrhythmia, the GFP-aequorin transgenic line provides a powerful platform for understanding calcium dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...