Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 29(8): 1421-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23475258

RESUMEN

Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h(-1), for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Reactores Biológicos/microbiología , Glicoproteínas/biosíntesis , Microbiología Industrial/métodos , Mycobacterium tuberculosis/genética , Streptomyces lividans/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/metabolismo , Glicoproteínas/genética , Microbiología Industrial/instrumentación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Streptomyces lividans/citología , Streptomyces lividans/genética
2.
Microb Cell Fact ; 10: 110, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185589

RESUMEN

BACKGROUND: The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis. RESULTS: Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks. CONCLUSIONS: The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria, particularly, if the protein activity depends on the glycosylation pattern. Furthermore, it will be an interesting exercise to determine the effect of shear and oxygen in shake flasks, to obtain evidences that may be useful in scaling-up these processes to bioreactors. Another approach will be using lab-scale bioreactors under well-controlled conditions, and study the impact of those on rAPA productivity and quality.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Expresión Génica , Glicoproteínas/metabolismo , Mycobacterium tuberculosis/genética , Streptomyces lividans/metabolismo , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes/instrumentación , Glicoproteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...