Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 3): 128049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963502

RESUMEN

The chitinase ChiA74 is synthesized by Bacillus thuringiensis and possesses a modular organization composed of four domains. In the C-terminal of the enzyme is located the chitin-binding domain (CBD), which has not been isolated as a single unit or characterized. Here, we aimed to isolate the ChiA74's CBD as a single unit, determine the binding properties, and evaluate its antimicrobial and hemolytic activities. We cloned the ChiA74's CBD and expressed it in Escherichia coli BL21. The single domain was purified, analyzed by SDS-PAGE, and characterized. The recombinant CBD (rCBD) showed a molecular mass of ∼14 kDa and binds strongly to α-chitin, with Kd and Bmax of ∼4.7 ± 0.9 µM and 1.5 ± 0.1 µmoles/g chitin, respectively. Besides, the binding potential (Bmax/Kd) was stronger for α-chitin (∼0.31) than microcrystalline cellulose (∼0.19). It was also shown that the purified rCBD inhibited the growth of the clinically relevant Gram-negative bacteria (GNB) Vibrio cholerae, and V. parahemolyticus CVP2 with minimum inhibitory concentrations (MICs) of 121 ± 9.9 and 138 ± 3.2 µg/mL, respectively, and of one of the most common GNB plant pathogens, Pseudomonas syringae with a MIC of 230 ± 13.8 µg/mL. In addition, the rCBD possessed antifungal activity inhibiting the conidia germination of Fusarium oxysporum (MIC = 192 ± 37.5 µg/mL) and lacked hemolytic and agglutination activities against human erythrocytes. The significance of this work lies in the fact that data provided here show for the first time that ChiA74's CBD from B. thuringiensis has antimicrobial activity, suggesting its potential use against significant pathogenic microorganisms. Future works will be focused on testing the inhibitory effect against other pathogenic microorganisms and elucidating the mechanism of action.


Asunto(s)
Bacillus thuringiensis , Quitinasas , Humanos , Bacillus thuringiensis/química , Bacterias Gramnegativas/metabolismo , Antifúngicos/química , Quitina/química , Quitinasas/genética , Quitinasas/farmacología , Quitinasas/química
2.
Probiotics Antimicrob Proteins ; 15(4): 955-966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610496

RESUMEN

Thurincin H, a bacteriocin produced by Bacillus thuringiensis, exhibits antibacterial activity against Gram-positive and Gram-negative bacteria. While much is known about its expression and antimicrobial spectrum, its hemolytic property has yet to be established. In this study, thurincin H was produced in a plasmid-free acrystalliferous strain of B. thuringiensis (Bt Cry-B) that naturally lacked antimicrobial and hemolytic activities. When grown in Tryptic Soy Broth (TSB), the bacteriocin's maximal production in Bt Cry-B harboring the thurincin H genetic cluster (Bt Cry-B/pThur) was observed at 24 h. Thurincin H was purified as a sole peptide of ~5 kDa using three purification steps, i.e., salt precipitation, ultrafiltration, and gel filtration chromatography. The bacteriocin showed inhibitory activity against B. cereus (5631 U), Bt Cry-B (8827 U), E. faecium wild type (11,197 U), and E. faecium ATCC 19,434 (6950 U), but not against Bt Cry-B/pThurH and Bt Cry-B/pThurHΔThnA. In addition, a minimum inhibitory concentration (MIC) of 5.0 µg/mL against B. cereus 183 was observed. In silico predictions suggested that thuricin H lacks hemolytic activity, which was validated in vitro using 4 × the MIC, i.e., 20 µg/ml. Our data lay a foundation for the potential safe use of thurincin H as an antibacterial peptide for medical use, in food products, and for expression in probiotic bacteria.


Asunto(s)
Bacillus thuringiensis , Bacteriocinas , Antibacterianos/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Bacterias Grampositivas , Bacterias Gramnegativas , Bacteriocinas/genética , Bacteriocinas/farmacología
3.
J Appl Microbiol ; 133(3): 1989-2001, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35808847

RESUMEN

AIMS: The objective of this study was to evaluate the inhibitory activity of compounds secreted by bacteria isolated from a hydrogen-producing bioreactor to understand how these microorganisms interact in this community. METHODS AND RESULTS: In vitro inhibitory assays were performed using samples secreted by bacteria subject to different treatments to determine if their inhibitory effect was due to organic acids, non-proteinaceous compounds or bacteriocin-like inhibitory substances (BLIS). Bacterial isolated were suppressed 43%, 30% and 27% by neutralized, precipitated and non-neutralized cell-free supernatants, respectively. Non-hydrogen producers (non-H2 P) lactic acid bacteria (LAB) (Lactobacillus plantarum LB1, Lactobacillus pentosus LB7, Pediococcus acidilactici LB4) and hydrogen producers (H2 P) LAB (Enterococcus faecium F) were inhibited by the production of organic acids, non-proteinaceous compounds and BLIS. Meanwhile, the obligate anaerobe H2 P (Clostridium beijerinckii B) inhibited by the production of non-proteinaceous compounds and BLIS. The presence of BLIS was confirmed when proteolytic enzymes affected the inhibitory activity of secreted proteins in values ranging from 20% to 42%. The BLIS produced by L. plantarum LB1, P. acidilactici LB4, L. pentosus LB7 and E. faecium F showed molecular masses of ~11, 25, 20 and 11 kDa, respectively. CONCLUSIONS: It was demonstrated antagonistic interactions between Lactobacillus-Enterococcus and Pediococcus-Enterococcus species, generated by the secretion of organic acids, non-proteinaceous compounds and BLIS. SIGNIFICANCE AND IMPACT OF THE STUDY: We report the interactions between LAB isolated from hydrogen-producing bioreactors. These interactions might impact the dynamics of the microbial population during hydrogen generation. Our work lays a foundation for strategies that allow controlling bacteria that can affect hydrogen production.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Lactobacillales , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Reactores Biológicos , Enterococcus/metabolismo , Fermentación , Hidrógeno/metabolismo , Lactobacillales/metabolismo , Pediococcus/metabolismo , Triticum/metabolismo
4.
Front Microbiol ; 10: 3032, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993038

RESUMEN

The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA