Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2407083121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292751

RESUMEN

Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Octopamina , Folículo Ovárico , Ovulación , Animales , Actomiosina/metabolismo , Ovulación/fisiología , Folículo Ovárico/metabolismo , Folículo Ovárico/fisiología , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Octopamina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/fisiología , Miosina Tipo II/metabolismo , Epitelio/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Oocitos/metabolismo , Drosophila/fisiología
2.
Curr Biol ; 34(10): 2132-2146.e5, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688282

RESUMEN

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas Activadoras de GTPasa , Animales , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Actomiosina/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Embrión no Mamífero/metabolismo , Tipificación del Cuerpo
3.
Curr Biol ; 34(7): R286-R288, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593774

RESUMEN

Tissue folding is a key process for shape generation during embryonic development. A new study reports how a fold in the Drosophila embryo forms by a propagating trigger wave.


Asunto(s)
Proteínas de Drosophila , Desarrollo Embrionario , Animales , Morfogénesis , Drosophila , Embrión de Mamíferos , Embrión no Mamífero , Drosophila melanogaster
4.
Mol Biol Cell ; 35(5): ar69, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536475

RESUMEN

The regulation of the cytoskeleton by multiple signaling pathways, sometimes in parallel, is a common principle of morphogenesis. A classic example of regulation by parallel pathways is Drosophila gastrulation, where the inputs from the Folded gastrulation (Fog)/Concertina (Cta) and the T48 pathways induce apical constriction and mesoderm invagination. Whether there are distinct roles for these separate pathways in regulating the complex spatial and temporal patterns of cytoskeletal activity that accompany early embryo development is still poorly understood. We investigated the roles of the Fog/Cta and T48 pathways and found that, by themselves, the Cta and T48 pathways both promote timely mesoderm invagination and apical myosin II accumulation, with Cta being required for timely cell shape change ahead of mitotic cell division. We also identified distinct functions of T48 and Cta in regulating cellularization and the uniformity of the apical myosin II network, respectively. Our results demonstrate that both redundant and distinct functions for the Fog/Cta and T48 pathways exist.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Gastrulación , Proteínas de Drosophila/metabolismo , Morfogénesis , Mesodermo , Miosina Tipo II/metabolismo , Drosophila melanogaster/metabolismo
5.
Dev Cell ; 58(24): 2850-2866, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113851

RESUMEN

The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.


Asunto(s)
Plantas , Transducción de Señal , Animales , Morfogénesis , Biofisica , Desarrollo de la Planta
6.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986763

RESUMEN

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.

7.
Sci Adv ; 9(36): eadg1261, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672580

RESUMEN

Complex disordered matter is of central importance to a wide range of disciplines, from bacterial colonies and embryonic tissues in biology to foams and granular media in materials science to stellar configurations in astrophysics. Because of the vast differences in composition and scale, comparing structural features across such disparate systems remains challenging. Here, by using the statistical properties of Delaunay tessellations, we introduce a mathematical framework for measuring topological distances between general three-dimensional point clouds. The resulting system-agnostic metric reveals subtle structural differences between bacterial biofilms as well as between zebrafish brain regions, and it recovers temporal ordering of embryonic development. We apply the metric to construct a universal topological atlas encompassing bacterial biofilms, snowflake yeast, plant shoots, zebrafish brain matter, organoids, and embryonic tissues as well as foams, colloidal packings, glassy materials, and stellar configurations. Living systems localize within a bounded island-like region of the atlas, reflecting that biological growth mechanisms result in characteristic topological properties.


Asunto(s)
Vendajes , Pez Cebra , Femenino , Animales , Biopelículas , Encéfalo , Desarrollo Embrionario , Saccharomyces cerevisiae
8.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131807

RESUMEN

Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.

9.
Methods Mol Biol ; 2626: 219-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715907

RESUMEN

Drosophila oogenesis is a powerful and tractable model for studies of cell and developmental biology due to the multitude of well-characterized events in both germline and somatic cells, the ease of genetic manipulation in fruit flies, and the large number of egg chambers produced by each fly. Recent improvements in live imaging and ex vivo culturing protocols have enabled researchers to conduct more detailed, longer-term studies of egg chamber development, enabling insights into fundamental biological processes. Here, we present a protocol for dissection, culturing, and imaging of late-stage egg chambers to study intercellular and directional cytoplasmic flow during "nurse cell dumping." This critical developmental process towards the latter stages of oogenesis (stages 10b/11) results in rapid growth of the oocyte and shrinkage of the nurse cells and is accompanied by dynamic changes in cell shape. We also describe a procedure to record high-time-resolution movies of the flow of unlabeled cytoplasmic contents within nurse cells and through cytoplasmic bridges in the nurse cell cluster using reflection microscopy, and we describe two ways to analyze data from nurse cell dumping.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Oogénesis/genética , Oocitos , Células Germinativas
10.
bioRxiv ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187543

RESUMEN

The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates a mechanism of coordination between tissue folding and convergent extension that facilitates embryo-wide gastrulation movements.

11.
Nat Phys ; 19(12): 1927-1935, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38831923

RESUMEN

The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution live imaging data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tuneable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.

12.
Elife ; 112022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796436

RESUMEN

Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Gastrulación , Unión Proteica , Huso Acromático/metabolismo
13.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34124762

RESUMEN

During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.


Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina , Animales , Proteínas de Ciclo Celular , Forma de la Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Activadoras de GTPasa/metabolismo , Morfogénesis/fisiología , Miosina Tipo II/metabolismo , Proteínas de Unión al GTP rho/genética
14.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34132746

RESUMEN

Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.


Asunto(s)
División Celular , Forma de la Célula , Células Epiteliales/fisiología , Mecanotransducción Celular , Animales , Animales Modificados Genéticamente , Comunicación Celular , Segregación Cromosómica , Simulación por Computador , Perros , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células de Riñón Canino Madin Darby , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Estrés Mecánico , Factores de Tiempo , Imagen de Lapso de Tiempo
15.
Curr Biol ; 31(10): R667-R680, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34033797

RESUMEN

The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.


Asunto(s)
Actinas/metabolismo , Adhesión Celular , Morfogénesis , Citoesqueleto de Actina , Animales , Citoesqueleto
16.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658367

RESUMEN

From insects to mice, oocytes develop within cysts alongside nurse-like sister germ cells. Prior to fertilization, the nurse cells' cytoplasmic contents are transported into the oocyte, which grows as its sister cells regress and die. Although critical for fertility, the biological and physical mechanisms underlying this transport process are poorly understood. Here, we combined live imaging of germline cysts, genetic perturbations, and mathematical modeling to investigate the dynamics and mechanisms that enable directional and complete cytoplasmic transport in Drosophila melanogaster egg chambers. We discovered that during "nurse cell (NC) dumping" most cytoplasm is transported into the oocyte independently of changes in myosin-II contractility, with dynamics instead explained by an effective Young-Laplace law, suggesting hydraulic transport induced by baseline cell-surface tension. A minimal flow-network model inspired by the famous two-balloon experiment and motivated by genetic analysis of a myosin mutant correctly predicts the directionality, intercellular pattern, and time scale of transport. Long thought to trigger transport through "squeezing," changes in actomyosin contractility are required only once NC volume has become comparable to nuclear volume, in the form of surface contractile waves that drive NC dumping to completion. Our work thus demonstrates how biological and physical mechanisms cooperate to enable a critical developmental process that, until now, was thought to be mainly biochemically regulated.


Asunto(s)
Núcleo Celular/metabolismo , Hidrodinámica , Modelos Biológicos , Oocitos/metabolismo , Oogénesis , Animales , Transporte Biológico Activo , Drosophila melanogaster , Femenino
17.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190551, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32829683

RESUMEN

During tissue morphogenesis, mechanical forces are propagated across tissues, resulting in tissue shape changes. These forces in turn can influence cell behaviour, leading to a feedback process that can be described as self-organizing. Here, I discuss cytoskeletal self-organization and point to evidence that suggests its role in directing force during morphogenesis. During Drosophila mesoderm invagination, the shape of the region of cells that initiates constriction creates a mechanical pattern that in turn aligns the cytoskeleton with the axis of greatest resistance to contraction. The wild-type direction of the force controls the shape and orientation of the invaginating mesoderm. Given the ability of the actomyosin cytoskeleton to self-organize, these types of feedback mechanisms are likely to play important roles in a range of different morphogenetic events. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.


Asunto(s)
Citoesqueleto/fisiología , Drosophila/embriología , Embrión no Mamífero/embriología , Mesodermo/embriología , Morfogénesis , Animales
18.
Mol Biol Cell ; 31(16): 1663-1674, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32129704

RESUMEN

During development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled nonmitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.


Asunto(s)
Polaridad Celular , Drosophila melanogaster/citología , Mitosis , Morfogénesis , Animales , Anisotropía , Adhesión Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión de Mamíferos/citología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mesodermo/citología , Modelos Biológicos , Mutación/genética , Miosinas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Genetics ; 214(3): 543-560, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132154

RESUMEN

A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.


Asunto(s)
Endodermo/crecimiento & desarrollo , Gastrulación/genética , Mesodermo/crecimiento & desarrollo , Fenómenos Físicos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/genética , Morfogénesis/genética , Transducción de Señal/genética , Proteínas de Unión al GTP rho/genética
20.
Curr Opin Genet Dev ; 63: 24-29, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32171160

RESUMEN

Folding is an important way by which epithelia are sculpted into three-dimensional shapes during development. Recent studies have integrated quantitative image analysis and physical modeling to uncover contributing mechanisms. It is becoming clear that folding processes often employ multiple mechanisms of force generation. Here, we review divergent modes of epithelial folding. We argue that, in many cases, several mechanisms interact at different time-scales and length-scales to generate a fold. In other cases, very similar folds are generated by different folding mechanisms. How one (or a specific combination of) mechanism(s) might be advantageous in one case versus another is not understood, and future work using quantitative analyses and modeling will be required to determine reasons for distinct modes of folding.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/fisiología , Morfogénesis , Animales , Fenómenos Biomecánicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...