Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Heliyon ; 10(7): e28368, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560105

RESUMEN

New plant proteins with high nutritional quality and biological properties are actively searched worldwide. Moringa oleifera seed protein isolate was prepared from defatted flour and hydrolyzed using four proteases namely trypsin, pepsin, Alcalase, and thermolysin. Then, antioxidant activity and cellular glucose uptake properties of the hydrolysates were assessed. A high degree of hydrolysis was obtained for hydrolysate prepared using trypsin (60.07%), followed by pepsin (57.14%), Alcalase (50.68%), and thermolysin (45.45%). Thermolysin hydrolysate was the most antioxidant efficient (IC50 0.15 and 0.74 mg/mL for 2,2'-azino-bis(acide 3-ethylbenzothiazoline-6-sulfonique) diammonium salt (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, respectively). Trypsin hydrolysate stimulated high glucose uptake by yeast cells (12.34-35.28%). In the absence of insulin, Alcalase hydrolysate was the most efficient for glucose uptake by the muscle, with the rate ranging from 22.03% to 29.93% after 30 min, then from 29.55% to 34.6% after 60 min. The four hydrolysates improved glucose uptake by the muscle in the presence of insulin with the rate ranging from 46.88% to 58.03% after 30 min, and from 50% to 58.18% after 60 min. Therefore, Moringa oleifera seed proteins could be used to prepare peptides as components of functional foods for the management of type-2 diabetes.

2.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611816

RESUMEN

In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), ß-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), ß-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.


Asunto(s)
Algas Comestibles , Glucuronatos , Hiperglucemia , Rhodophyta , alfa-Amilasas , Humanos , alfa-Glucosidasas , Hipoglucemiantes/farmacología , Xilanos/farmacología , Simulación del Acoplamiento Molecular , Oligosacáridos/farmacología
3.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339161

RESUMEN

Physical exercise (EX) is well established for its positive impact on brain health. However, conventional EX may not be feasible for certain individuals. In this regard, this study explores electromyostimulation (EMS) as a potential alternative for enhancing cognitive function. Conducted on both human participants and rats, the study involved two sessions of EMS applied to the quadriceps with a duration of 30 min at one-week intervals. The human subjects experienced assessments of cognition and mood, while the rats underwent histological and biochemical analyses on the prefrontal cortex, hippocampus, and quadriceps. Our findings indicated that EMS enhanced executive functions and reduced anxiety in humans. In parallel, our results from the animal studies revealed an elevation in brain-derived neurotrophic factor (BDNF), specifically in the hippocampus. Intriguingly, this increase was not associated with heightened neuronal activity or cerebral hemodynamics; instead, our data point towards a humoral interaction from muscle to brain. While no evidence of increased muscle and circulating BDNF or FNDC5/irisin pathways could be found, our data highlight lactate as a bridging signaling molecule of the muscle-brain crosstalk following EMS. In conclusion, our results suggest that EMS could be an effective alternative to conventional EX for enhancing both brain health and cognitive function.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Condicionamiento Físico Animal , Humanos , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal/fisiología , Músculos/metabolismo , Condicionamiento Físico Animal/fisiología , Encéfalo/metabolismo , Fibronectinas/metabolismo
4.
J Appl Physiol (1985) ; 136(4): 844-852, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38357725

RESUMEN

This study aimed to evaluate torque production in response to the application of a brief muscle lengthening during neuromuscular electrical stimulation (NMES) applied over the posterior tibial nerve. Fifteen participants took part in three experimental sessions, where wide-pulse NMES delivered at 20 and 100 Hz (pulse duration of 1 ms applied during 15 s at an intensity evoking 5-10% of maximal voluntary contraction) was either applied alone (NMES condition) or in combination with a muscle lengthening at three distinct speeds (60, 180, or 300°/s; NMES + LEN condition). The torque-time integral (TTI) and the muscle activity following the stimulation trains [sustained electromyography (EMG)] were calculated for each condition. Results show that TTI and sustained EMG activity were higher for the NMES + LEN condition only when using 100-Hz stimulation, regardless of the lengthening speed (P = 0.029 and P = 0.007 for the two parameters, respectively). This indicates that superimposing a muscle lengthening to high-frequency NMES can enhance the total torque production, partly due to neural mechanisms, as evidenced by the higher sustained EMG activity. This finding has potential clinical relevance, especially when it comes to finding ways to enhance torque production to optimize the effectiveness of NMES training programs.NEW & NOTEWORTHY This study showed, for the first time, that the combined application of a brief muscle lengthening and wide-pulse neuromuscular electrical stimulation (NMES) delivered over the posterior tibial nerve can entail increased torque production as compared with the sole application of NMES. This observation, present only for high stimulation frequencies (100 Hz) and independently of the lengthening speed, is attributed to neural mechanisms, most probably related to increased afferents' solicitation, although muscular phenomena cannot be excluded.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Torque , Electromiografía/métodos , Estimulación Eléctrica/métodos , Fatiga Muscular/fisiología , Contracción Muscular/fisiología
5.
J Neurophysiol ; 131(2): 379-393, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198664

RESUMEN

Local vibration (LV) applied over the muscle tendon constitutes a powerful stimulus to activate the muscle spindle primary (Ia) afferents that project to the spinal level and are conveyed to the cortical level. This study aimed to identify the neuromuscular changes induced by a 30-min LV-inducing illusions of hand extension on the vibrated flexor carpi radialis (FCR) and the antagonist extensor carpi radialis (ECR) muscles. We studied the change of the maximal voluntary isometric contraction (MVIC, experiment 1) for carpal flexion and extension, motor-evoked potentials (MEPs, experiment 2), cervicomedullary motor-evoked potentials (CMEPs, experiment 2), and Hoffmann's reflex (H-reflex, experiment 3) for both muscles at rest. Measurements were performed before (PRE) and at 0, 30, and 60 min after LV protocol. A lasting decrease in strength was only observed for the vibrated muscle. The reduction in CMEPs observed for both muscles seems to support a decrease in alpha motoneurons excitability. In contrast, a slight decrease in MEPs responses was observed only for the vibrated muscle. The MEP/CMEP ratio increase suggested greater cortical excitability after LV for both muscles. In addition, the H-reflex largely decreased for the vibrated and the antagonist muscles. The decrease in the H/CMEP ratio for the vibrated muscle supported both pre- and postsynaptic causes of the decrease in the H-reflex. Finally, LV-inducing illusions of movement reduced alpha motoneurons excitability for both muscles with a concomitant increase in cortical excitability.NEW & NOTEWORTHY Spinal disturbances confound the interpretation of excitability changes in motor areas and compromise the conclusions reached by previous studies using only a corticospinal marker for both vibrated and antagonist muscles. The time course recovery suggests that the H-reflex perturbations for the vibrated muscle do not only depend on changes in alpha motoneurons excitability. Local vibration induces neuromuscular changes in both vibrated and antagonist muscles at the spinal and cortical levels.


Asunto(s)
Ilusiones , Humanos , Electromiografía/métodos , Ilusiones/fisiología , Vibración , Músculo Esquelético/fisiología , Tendones/fisiología , Potenciales Evocados Motores/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos
6.
Med Sci Sports Exerc ; 56(5): 893-901, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181211

RESUMEN

INTRODUCTION: A recent study showed that cadence modulation during short eccentric cycling exercise affects oxygen consumption (V̇O 2 ), muscular activity (EMG), and perception of effort (PE). This study examined the effect of cadence on V̇O 2 , EMG, and PE during prolonged eccentric cycling and exercise-induced neuromuscular alterations. METHODS: Twenty-two participants completed three sessions 2-3 wk apart: 1) determination of the maximal concentric peak power output, familiarization with eccentric cycling at two cadences (30 and 60 rpm at 60% peak power output), and neuromuscular testing procedure; 2) and 3) 30 min of eccentric cycling exercise at a cadence of 30 or 60 rpm. PE, cardiorespiratory parameters, and vastus lateralis and rectus femoris EMG were collected during exercise. The knee extensors' maximal voluntary contraction torque, the torque evoked by double stimulations at 100 Hz (Dt100) and 10 Hz (Dt10), and the voluntary activation level were evaluated before and after exercise. RESULTS: V̇O 2 , EMG, and PE were greater at 30 than 60 rpm (all P < 0.05). Maximal voluntary contraction torque, evoked torque, and Dt10/Dt100 ratio decreased (all P < 0.01) without cadence effect (all P > 0.28). Voluntary activation level remained constant after both eccentric cycling exercises ( P = 0.87). CONCLUSIONS: When performed at the same power output, eccentric cycling exercise at 30 rpm elicited a greater PE, EMG, and cardiorespiratory demands than pedaling at 60 rpm. Exercise-induced fatigability was similar in both eccentric cycling conditions without neural impairments, suggesting that eccentric cycling seemed to alter more specifically muscular function, such as the excitation-contraction coupling process. In a rehabilitation context, eccentric cycling at 60 rpm seems more appropriate because it will induce lower PE for similar strength loss compared with 30 rpm.


Asunto(s)
Rodilla , Contracción Muscular , Humanos , Contracción Muscular/fisiología , Electromiografía/métodos , Rodilla/fisiología , Extremidad Inferior/fisiología , Ciclismo/fisiología , Percepción , Músculo Esquelético/fisiología , Torque
7.
Eur J Appl Physiol ; 124(6): 1821-1833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38252303

RESUMEN

INTRODUCTION/PURPOSE: Recently, the use of transcutaneous spinal cord stimulation (TSCS) has been proposed as a viable alternative to the H-reflex. The aim of the current study was to investigate to what extent the two modes of spinal cord excitability investigation would be similarly sensitive to the well-known vibration-induced depression. METHODS: Fourteen healthy participants (8 men and 6 women; age: 26.7 ± 4.8 years) were engaged in the study. The right soleus H-reflex and TSCS responses were recorded at baseline (PRE), during right Achilles tendon vibration (VIB) and following 20 min of vibration exposure (POST-VIB). Care was taken to match H-reflex and TSCS responses amplitude at PRE and to maintain effective stimulus intensities constant throughout time points. RESULTS: The statistical analysis showed a significant effect of time for the H-reflex, with VIB (13 ± 5% of maximal M-wave (Mmax) and POST-VIB (36 ± 4% of Mmax) values being lower than PRE-values (48 ± 6% of Mmax). Similarly, TSCS responses changed over time, VIB (9 ± 5% of Mmax) and POST-VIB (27 ± 5% of Mmax) values being lower than PRE-values (46 ± 6% of Mmax). Pearson correlation analyses revealed positive correlation between H-reflex and TSCS responses PRE-to-VIB changes, but not for PRE- to POST-VIB changes. CONCLUSION: While the sensitivity of TSCS seems to be similar to the gold standard H-reflex to highlight the vibratory paradox, both responses showed different sensitivity to the effects of prolonged vibration, suggesting slightly different pathways may actually contribute to evoked responses of both stimulation modalities.


Asunto(s)
Tendón Calcáneo , Reflejo H , Músculo Esquelético , Estimulación de la Médula Espinal , Vibración , Humanos , Tendón Calcáneo/fisiología , Reflejo H/fisiología , Masculino , Femenino , Adulto , Estimulación de la Médula Espinal/métodos , Músculo Esquelético/fisiología , Médula Espinal/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos
8.
iScience ; 26(7): 107150, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534144

RESUMEN

In humans, moving efficiently along the gravity axis requires shifts in muscular contraction modes. Raising the arm up involves shortening contractions of arm flexors, whereas the reverse movement can rely on lengthening contractions with the help of gravity. Although this control mode is universal, the neuromuscular mechanisms that drive gravity-oriented movements remain unknown. Here, we designed neurophysiological experiments that aimed to track the modulations of cortical, spinal, and muscular outputs of arm flexors during vertical movements with specific kinematics (i.e., optimal motor commands). We report a specific drop of corticospinal excitability during lengthening versus shortening contractions, with an increase of intracortical inhibition and no change in spinal motoneuron responsiveness. We discuss these contraction-dependent modulations of the supraspinal motor output in the light of feedforward mechanisms that may support gravity-tuned motor control. Generally, these results shed a new perspective on the neural policy that optimizes movement control along the gravity axis.

9.
J Appl Physiol (1985) ; 134(5): 1093-1104, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36927140

RESUMEN

The purpose of this study is to investigate if a continuous muscle contraction (CON) is more fatiguing than an intermittent exercise (INT) performed until task failure. To get a more comprehensive picture of neuromuscular fatigability, in addition to the commonly used maximal voluntary contraction (MVC), we assessed the maximal torque sustainability (i.e., the ability to maintain a high level of torque for 1 min). Fourteen subjects performed a plantar flexors MVC of 1-min duration (MVC1-MIN) before and after CON or INT contractions at 40% MVC until task failure. Despite a greater torque-time integral for the INT task, a similar MVC reduction was found after both exercises. On the contrary, a greater torque loss during the MVC1-MIN was observed after the CON exercise and it was positively correlated to the mean exercise torque. These results reveal that, for exercises performed until exhaustion, the contraction pattern (i.e., CON vs. INT) affects the ability to maintain a high level of torque, but does not influence the maximal torque production capacity. Thus, we demonstrate that maximal torque production and sustainability are two distinct and complementary characteristics of neuromuscular fatigability. Consequently, when considering both capacities, it results that, an exhausting CON contraction is more fatiguing than an exhausting INT effort. This highlights the importance of simultaneously evaluating both capacities when exploring neuromuscular fatigability.NEW & NOTEWORTHY This study provides new information about the influence of the contraction pattern (i.e., continuous and intermittent) on the development of neuromuscular fatigability when exercise is performed until exhaustion. Maximal torque production is similarly reduced by both exercises, whereas maximal torque sustainability is impaired only after the continuous exercise. To evaluate neuromuscular fatigability, we then recommend using a sustained maximal voluntary contraction since this measure allows to concurrently collect information on complementary aspects of neuromuscular fatigability.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Fatiga Muscular/fisiología , Electromiografía , Contracción Isométrica/fisiología , Contracción Muscular/fisiología , Torque
10.
Eur J Appl Physiol ; 123(5): 1003-1014, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36622447

RESUMEN

PURPOSE: The combination of motor imagery (MI) and neuromuscular electrical stimulation (NMES) can increase the corticospinal excitability suggesting that such association could be efficient in motor performance improvement. However, differential effect has been reported at spinal level after MI and NMES alone. The purpose of this study was to investigate the acute effect on motor performance and spinal excitability following MI, NMES and combining MI and NMES. METHODS: Ten participants were enrolled in three experimental sessions of MI, NMES and MI + NMES targeting plantar flexor muscles. Each session underwent 60 imagined, evoked (20% MVC) or imagined and evoked contractions simultaneously. Before, immediately after and 10 min after each session, maximal M-wave and H-reflex were evoked by electrical nerve stimulation applied at rest and during maximal voluntary contraction (MVC). RESULTS: The MVC decreased significantly between PRE-POST (- 12.14 ± 6.12%) and PRE-POST 10 (- 8.1 ± 6.35%) for NMES session, while this decrease was significant only between PRE-POST 10 (- 7.16 ± 11.25%) for the MI + NMES session. No significant modulation of the MVC was observed after MI session. The ratio Hmax/Mmax was reduced immediately after NMES session only. CONCLUSION: The combination of MI to NMES seems to delay the onset of neuromuscular fatigue compared to NMES alone. This delay onset of neuromuscular fatigue was associated with specific modulation of the spinal excitability. These results suggested that MI could compensate the neuromuscular fatigue induced acutely by NMES until 10 min after the combination of both modalities.


Asunto(s)
Músculo Esquelético , Infarto del Miocardio , Humanos , Músculo Esquelético/fisiología , Fatiga Muscular/fisiología , Electromiografía/métodos , Estimulación Eléctrica/métodos , Potenciales Evocados Motores/fisiología , Contracción Muscular/fisiología
11.
Med Sci Sports Exerc ; 55(6): 1105-1113, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719652

RESUMEN

INTRODUCTION: The effect of cadence in eccentric (ECC) cycling on physiological and perceptual responses is, to date, poorly understood. This study aimed to evaluate the effect of cadence during ECC cycling on muscular activation (EMG), oxygen consumption (V̇O 2 ), and perceived effort (PE) for two different levels of power output. METHODS: Seventeen participants completed four sessions 1 wk apart: 1) determination of the maximal concentric peak power output (PPO) and familiarization with ECC cycling at five cadences (30, 45, 60, 75, and 90 rpm); 2) second familiarization with ECC cycling; 3) and 4) ECC cycling exercise consisting of 5 min at the five different cadences at either 40% or 60% PPO. PE was reported, and V̇O 2 and EMG of seven muscles were calculated over the exercise's last minute. RESULTS: PE, V̇O 2 , and global lower limb muscles activation (EMG ALL ) showed an effect of cadence ( P < 0.001) and followed a curvilinear function. Both low and high cadences increased PE and V̇O 2 responses compared with intermediate cadences. Although muscle activation of vastus lateralis follows a U-shaped curve with cadence, it was greater at low cadence for rectus femoris and biceps femoris, greater at high cadence for tibialis anterior and gastrocnemius medialis, and was not altered for soleus. The estimated optimal cadence was greater (all P < 0.01) for V̇O 2 (64.5 ± 7.9 rpm) than PE (61.7 ± 9.4 rpm) and EMG ALL (55.9 ± 9.3 rpm), but power output had no effect on the optimal cadences. CONCLUSIONS: The physiological and perceptual responses to changes in cadence during ECC cycling followed a U-shaped curve with an optimal cadence depending on the parameter considered.


Asunto(s)
Músculo Esquelético , Músculo Cuádriceps , Humanos , Electromiografía , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Extremidad Inferior/fisiología , Ejercicio Físico , Consumo de Oxígeno/fisiología , Ciclismo/fisiología
12.
Mar Drugs ; 21(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36662222

RESUMEN

In this study, we studied the bioactive peptides produced by thermolysin hydrolysis of a water-soluble protein (WSP) from the red alga Gracilariopsis chorda, whose major components are phycobiliproteins and Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo). The results showed that WSP hydrolysate exhibited significantly higher ACE inhibitory activity (92% inhibition) compared to DPP-IV inhibitory activity and DPPH scavenging activity. The phycobiliproteins and RuBisCo of G. chorda contain a high proportion of hydrophobic (31.0-46.5%) and aromatic (5.1-46.5%) amino acid residues, which was considered suitable for the formation of peptides with strong ACE inhibitory activity. Therefore, we searched for peptides with strong ACE inhibitory activity and identified two novel peptides (IDHY and LVVER). Then, their interaction with human ACE was evaluated by molecular docking, and IDHY was found to be a promising inhibitor. In silico analysis was then performed on the structural factors affecting ACE inhibitory peptide release, using the predicted 3D structures of phycobiliproteins and RuBisCo. The results showed that most of the ACE inhibitory peptides are located in the highly solvent accessible α-helix. Therefore, it was suggested that G. chorda is a good source of bioactive peptides, especially ACE-inhibitory peptides.


Asunto(s)
Rhodophyta , Ribulosa-Bifosfato Carboxilasa , Humanos , Simulación del Acoplamiento Molecular , Péptidos/química , Rhodophyta/metabolismo , Ficobiliproteínas , Peptidil-Dipeptidasa A/química
13.
J Appl Physiol (1985) ; 133(6): 1327-1340, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356258

RESUMEN

The study analyzed neural mechanisms mediating spinal excitability modulation during eccentric (ECC) movement (passive muscle lengthening, submaximal, and maximal ECC contractions) as compared with concentric (CON) conditions. Twenty-two healthy subjects participated in three experiments. Experiment A (n = 13) examined D1 presynaptic inhibition (D1 PI) and recurrent inhibition (RI) modulation during passive muscle lengthening and shortening, by conditioning the soleus (SOL) H-reflex with common peroneal nerve submaximal and tibial nerve maximal stimulation, respectively. Experiment B (n = 13) analyzed the effect of passive muscle lengthening on D1 PI and heteronymous Ia facilitation (HF, conditioning the SOL H-reflex by femoral stimulation). Experiment C (n = 13) focused on the effect of muscle contraction level (20%, 50%, and 100% of maximal voluntary contraction) on D1 PI and RI. Results showed a significantly higher level of D1 PI during passive muscle lengthening than shortening (P < 0.01), whereas RI and HF were not affected by passive muscle movement. D1 PI and RI were both higher during ECC as compared with CON contractions (P < 0.001). However, the amount of D1 PI was independent of the torque level, whereas RI was reduced as the torque level increased (P < 0.05). The decreased spinal excitability induced by muscle lengthening during both passive and active conditions is mainly attributed to D1 PI, whereas RI also plays a role in the control of the specific motoneuron output during ECC contractions. Both inhibitory mechanisms are centrally controlled, but the fact that they evolve differently with torque increases, suggests a distinct supraspinal control.NEW & NOTEWORTHY Presynaptic (PI) and recurrent inhibitions (RI) were studied during passive muscle lengthening and eccentric contractions. Results indicate that the increased PI during passive muscle lengthening accounts for the decreased spinal excitability at rest. During eccentric contraction both mechanisms contribute to spinal excitability modulation. The same amount of PI was observed during eccentric contractions, while RI decreased as developed torque increased. This distinct modulation according to torque level suggests a distinct supraspinal control of these mechanisms.


Asunto(s)
Reflejo H , Músculo Esquelético , Humanos , Electromiografía/métodos , Reflejo H/fisiología , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Torque , Contracción Isométrica/fisiología
14.
Sci Rep ; 12(1): 20238, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424457

RESUMEN

While resultant maximal voluntary contraction (MVC) is commonly used to assess muscular performance, the simultaneous activation of antagonist muscles may dramatically underestimate the strength of the agonist muscles. Although quantification of antagonist torque has been performed in isometric conditions, it has yet to be determined in anisometric conditions. The aim of the study was to compare the mechanical impact of antagonist torque between eccentric, isometric and concentric contractions in PF and DF MVCs. The MVCs in dorsiflexion (DF) and plantar-flexion (PF) were measured in isometric, concentric and eccentric conditions (10° s-1) in nine healthy men (26.1 ± 2.7 years; 1.78 ± 0.05 m; 73.4 ± 6.5 kg) through two sessions. Electromyographic (EMG) activities from the soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles were simultaneously recorded. The EMG biofeedback method was used to quantify antagonist torque. Resultant torque significantly underestimated agonist torque in DF MVC (30-65%) and to a lesser extent in PF MVC (3%). Triceps surae antagonist torque was significantly modified with muscle contraction type, showing higher antagonist torque in isometric (29 Nm) than in eccentric (23 Nm, p < 0.001) and concentric (14 Nm, p < 0.001) conditions and resulting in modification of the DF MVC torque-velocity shape. Estimation of the antagonist torque in isometric or anisometric conditions provides new relevant insights to improve neuromuscular performance assessment and to better design strength training and rehabilitation programs related to the torque applied by agonist and antagonist muscles.


Asunto(s)
Tobillo , Enfermedades de la Vejiga Urinaria , Masculino , Humanos , Torque , Articulación del Tobillo/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología
15.
Front Physiol ; 13: 970917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117706

RESUMEN

Neuromuscular fatigability is a failure to produce or maintain a required torque, and commonly quantified with the decrease of maximal torque production during a few seconds-long maximal voluntary contraction (MVC). The literature shows that the MVC reduction after exercises with different torque-time integral (TTI), is often similar. However, it was shown that after a fatiguing exercise, the decline in the capacity to sustain the maximal voluntary contraction for 1 min (MVC1-MIN) differs from the decrease in the capacity to perform a brief-MVC, suggesting that this latter can only partially assess neuromuscular fatigability. This study aims to highlight the relevance of using a sustained MVC to further explore the neuromuscular alterations induced by fatiguing exercises with different TTI. We used two contraction intensities (i.e., 20% and 40% MVC) to modulate the TTI, and two exercise modalities [i.e., voluntary (VOL) and electrical induced (NMES)], since the letter are known to be more fatiguing for a given TTI. Thirteen subjects performed a plantar-flexors MVC1-MIN before and after the fatiguing exercises. A similar MVC loss was obtained for the two exercise intensities despite a greater TTI at 40% MVC, regardless of the contraction modality. On the other hand, the torque loss during MVC1-MIN was significantly greater after the 40% compared to 20% MVC exercise. These findings are crucial because they demonstrate that maximal torque production and sustainability are two complementary features of neuromuscular fatigability. Hence, MVC1-MIN assessing simultaneously both capacities is essential to provide a more detailed description of neuromuscular fatigability.

16.
J Aerosol Med Pulm Drug Deliv ; 35(6): 291-295, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960504

RESUMEN

Background: As an anti-inflammatory and antioxidant, sodium pyruvate significantly reduces inflammatory cytokines and oxygen radicals such as interleukin (IL) IL-6, IL-8, Monocyte Chemoattractant Protein-1, and hydrogen peroxide. Thus, sodium pyruvate holds promise as a treatment for many respiratory diseases, including allergic rhinitis (AR). Novel treatments for AR are needed as current medications, including steroids, often fail to treat severe symptoms. Methods: The data from five human clinical studies were analyzed to determine the effect of 20 mM sodium pyruvate nasal spray (N115) in patients with AR. Nasal inflammation scores were compared to a placebo control or a no-treatment baseline control. Three studies were open-labeled and two were appropriately blinded to both patients and clinicians using computer randomization of subjects. Results: The intranasal administration of sodium pyruvate significantly improved nasal inflammation scores in all five clinical trials of patients with AR (p < 0.0001 in all trials). Conclusions: These results give credence to the overall ability of sodium pyruvate, administered by nasal spray, to treat inflammation of the nasal airways.


Asunto(s)
Rinitis Alérgica Estacional , Rinitis Alérgica , Humanos , Administración por Inhalación , Administración Intranasal , Inflamación/tratamiento farmacológico , Rociadores Nasales , Piruvatos/uso terapéutico , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica Estacional/tratamiento farmacológico , Sodio/uso terapéutico
17.
Front Physiol ; 13: 811118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492591

RESUMEN

Elevation of cerebral blood flow (CBF) may contribute to the cerebral benefits of the regular practice of physical exercise. Surprisingly, while electrically induced contraction of a large muscular mass is a potential substitute for physical exercise to improve cognition, its effect on CBF remains to be investigated. Therefore, the present study investigated CBF in the cortical area representing the hindlimb, the hippocampus and the prefrontal cortex in the same anesthetized rats subjected to either acute (30 min) or chronic (30 min for 7 days) electrically induced bilateral hindlimb contraction. While CBF in the cortical area representing the hindlimb was assessed from both laser doppler flowmetry (LDFCBF) and changes in p-eNOSSer1177 levels (p-eNOSCBF), CBF was evaluated only from changes in p-eNOSSer1177 levels in the hippocampus and the prefrontal cortex. The contribution of increased cardiac output and increased neuronal activity to CBF changes were examined. Stimulation was associated with tachycardia and no change in arterial blood pressure. It increased LDFCBF with a time- and intensity-dependent manner as well as p-eNOSCBF in the area representing the hindlimb. By contrast, p-eNOSCBF was unchanged in the two other regions. The augmentation of LDFCBF was partially reduced by atenolol (a ß1 receptor antagonist) and not reproduced by the administration of dobutamine (a ß1 receptor agonist). Levels of c-fos as a marker of neuronal activation selectively increased in the area representing the hindlimb. In conclusion, electrically induced bilateral hindlimb contraction selectively increased CBF in the cortical area representing the stimulated muscles as a result of neuronal hyperactivity and increased cardiac output. The absence of CBF changes in cognition-related brain regions does not support flow-dependent neuroplasticity in the pro-cognitive effect of electrically induced contraction of a large muscular mass.

18.
Front Physiol ; 13: 854824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370788

RESUMEN

How corticospinal excitability changes during eccentric locomotor exercise is unknown. In the present study, 13 volunteers performed 30-min strenuous concentric and eccentric cycling bouts at the same power output (60% concentric peak power output). Transcranial magnetic and electrical femoral nerve stimulations were applied at exercise onset (3rd min) and end (25th min). Motor-evoked potentials (MEPs) amplitude was measured for the rectus femoris (RF) and vastus lateralis (VL) muscles with surface electromyography (EMG) and expressed as a percentage of maximal M-wave amplitude (MMAX). EMG amplitude 100 ms prior to MEPs and the silent period duration were calculated. There was no change in any neural parameter during the exercises (all P > 0.24). VL and RF MMAX were unaffected by exercise modality (all P > 0.38). VL MEP amplitude was greater (26 ± 11.4 vs. 15.2 ± 7.7% MMAX; P = 0.008) during concentric than eccentric cycling whereas RF MEP amplitude was not different (24.4 ± 10.8 vs. 17.2 ± 9.8% MMAX; P = 0.051). While VL EMG was higher during concentric than eccentric cycling (P = 0.03), RF EMG showed no significant difference (P = 0.07). Similar silent period durations were found (RF: 120 ± 30 ms; VL: 114 ± 27 ms; all P > 0.61), but the silent period/MEP ratio was higher during eccentric than concentric cycling for both muscles (all P < 0.02). In conclusion, corticospinal excitability to the knee extensors is lower and relative silent period longer during eccentric than concentric cycling, yet both remained unaltered with time.

19.
Food Chem ; 384: 132546, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247776

RESUMEN

Knowledge on how food processing conditions and protein composition can modulate individual or food matrix protein functionality is crucial for designing new protein ingredients. In this regard, we investigated how heat treatment and protein composition influence physicochemical and functional properties of Moringa oleifera seed protein isolate. Results showed that changes in processing temperature induced modifications in the conformation affecting the hydrophobic core of proteins. Protein isolate was more soluble at room temperature whereas prolamin fraction presented high solubility at 70 °C. Glutelin showed higher emulsifying properties at all temperatures. Protein composition also significantly affected physicochemical and functional properties of protein isolate. Increasing soluble glutelin enhanced solubility while increasing albumin, globulin and glutelin decreased hydrophobicity of the isolate. Likewise, increasing soluble globulin improved emulsifying capacity, and emulsion stability of the isolate was negatively affected by increase in albumin and glutelin. These findings could enhance application of Moringa oleifera protein in food formulations.


Asunto(s)
Globulinas , Moringa oleifera , Albúminas/análisis , Globulinas/química , Glútenes/química , Calor , Moringa oleifera/química , Semillas/química
20.
Heliyon ; 7(8): e07824, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34471709

RESUMEN

Bambara bean is a rich low-cost protein source and a functional ingredient in the food industry. We investigated the effects of temperature and different pH on the physicochemical and functional properties of Bambara bean protein isolate. Vicilin was the major protein of Bambara bean as revealed by SDS PAGE analysis. The emulsifying capacity of protein isolate was highest at 80 °C, pH 9 while emulsion stability was highest at pH 4. Generally, increase in temperature decreased protein solubility at pH 4 and 7, while increase was observed at pH 9 and 100 °C. The hydrophobicity of isolate was highest at pH 4 and lowest at pH 9, regardless of temperature. Protein isolate possessed highly compact ß-sheet and α-helix secondary structures in proportions greater than 75% (at pH 9 and 50 °C). Increase in temperature generally promoted protein rearrangement and partial unfolding. Protein secondary structure and surface hydrophobicity can predict food functionality, directly affecting protein behavior during formulation and long-term storage. This study clearly demonstrated the potential of exploiting pulse protein isolates as nutritional and functional ingredients through temperature and pH control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...