RESUMEN
Culturally transmitted communication signals - such as human language or bird song - can change over time through cultural drift, and the resulting dialects may consequently enhance the separation of populations. However, the emergence of song dialects has been considered unlikely when songs are highly individual-specific, as in the zebra finch (Taeniopygia guttata). Here we show that machine learning can nevertheless distinguish the songs from multiple captive zebra finch populations with remarkable precision, and that 'cryptic song dialects' predict strong assortative mating in this species. We examine mating patterns across three consecutive generations using captive populations that have evolved in isolation for about 100 generations. We cross-fostered eggs within and between these populations and used an automated barcode tracking system to quantify social interactions. We find that females preferentially pair with males whose song resembles that of the females' adolescent peers. Our study shows evidence that in zebra finches, a model species for song learning, individuals are sensitive to differences in song that have hitherto remained unnoticed by researchers.
Asunto(s)
Pinzones , Animales , Femenino , Lenguaje , Aprendizaje Automático , Masculino , Vocalización AnimalRESUMEN
Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.
Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Infección Persistente/inmunología , Vacunas/inmunología , Virosis/inmunología , Animales , Anticuerpos Antivirales/inmunología , Presentación de Antígeno/inmunología , Antivirales/inmunología , Células Cultivadas , Centro Germinal/inmunología , Inflamación/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Células B de Memoria/inmunología , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Células TH1/inmunología , Vacunación/métodosRESUMEN
Female mate choice is thought to be responsible for the evolution of many extravagant male ornaments and displays, but the costs of being too selective may hinder the evolution of choosiness. Selection against choosiness may be particularly strong in socially monogamous mating systems, because females may end up without a partner and forego reproduction, especially when many females prefer the same few partners (frequency-dependent selection). Here, we quantify the fitness costs of having mating preferences that are difficult to satisfy, by manipulating the availability of preferred males. We capitalize on the recent discovery that female zebra finches (Taeniopygia guttata) prefer males of familiar song dialect. We measured female fitness in captive breeding colonies in which one-third of females were given ample opportunity to choose a mate of their preferred dialect (two-thirds of all males; "relaxed competition"), while two-thirds of the females had to compete over a limited pool of mates they preferred (one-third of all males; "high competition"). As expected, social pairings were strongly assortative with regard to song dialect. In the high-competition group, 26% of the females remained unpaired, yet they still obtained relatively high fitness by using brood parasitism as an alternative reproductive tactic. Another 31% of high-competition females paired disassortatively for song dialect. These females showed increased levels of extra-pair paternity, mostly with same-dialect males as sires, suggesting that preferences were not abolished after social pairing. However, females that paired disassortatively for song dialect did not have lower reproductive success. Overall, females in the high-competition group reached equal fitness to those that experienced relaxed competition. Our study suggests that alternative reproductive tactics such as egg dumping can help overcome the frequency-dependent costs of being selective in a monogamous mating system, thereby facilitating the evolution of female choosiness.
Asunto(s)
Pinzones/fisiología , Preferencia en el Apareamiento Animal/fisiología , Conducta Social , Animales , Conducta Competitiva , Femenino , Masculino , Parásitos/fisiologíaRESUMEN
Several RNA viruses can establish life-long persistent infection in mammalian hosts, but the fate of individual virus-infected cells remains undefined. Here we used Cre recombinase-encoding lymphocytic choriomeningitis virus to establish persistent infection in fluorescent cell fate reporter mice. Virus-infected hepatocytes underwent spontaneous noncytolytic viral clearance independently of type I or type II interferon signaling or adaptive immunity. Viral clearance was accompanied by persistent transcriptomic footprints related to proliferation and extracellular matrix remodeling, immune responses, and metabolism. Substantial overlap with persistent epigenetic alterations in HCV-cured patients suggested a universal RNA virus-induced transcriptomic footprint. Cell-intrinsic clearance occurred in cell culture, too, with sequential infection, reinfection cycles separated by a period of relative refractoriness to infection. Our study reveals that systemic persistence of a prototypic noncytolytic RNA virus depends on continuous spread and reinfection. Yet undefined cell-intrinsic mechanisms prevent viral persistence at the single-cell level but give way to profound transcriptomic alterations in virus-cleared cells.
Asunto(s)
Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/virología , Hepatocitos/virología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Inmunidad Adaptativa , Animales , Infecciones por Arenaviridae/patología , Chlorocebus aethiops , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interferones/metabolismo , Virus de la Coriomeningitis Linfocítica/genética , Ratones Transgénicos , Reinfección , Análisis de la Célula Individual , Células Vero , Carga Viral , Proteínas Virales/metabolismoRESUMEN
AbstractSome species show high rates of reproductive failure, which is puzzling because natural selection works against such failure in every generation. Hatching failure is common in both captive and wild zebra finches (Taeniopygia guttata), yet little is known about its proximate causes. Here we analyze data on reproductive performance (the fate of >23,000 eggs) based on up to 14 years of breeding of four captive zebra finch populations. We find that virtually all aspects of reproductive performance are negatively affected by inbreeding (mean r=-0.117); by an early-starting, age-related decline (mean r=-0.132); and by poor early-life nutrition (mean r=-0.058). However, these effects together explain only about 3% of the variance in infertility, offspring mortality, fecundity, and fitness. In contrast, individual repeatability of different fitness components varied between 15% and 50%. As expected, we found relatively low heritability in fitness components (median: 7% of phenotypic variation and 29% of individually repeatable variation). Yet some of the heritable variation in fitness appears to be maintained by antagonistic pleiotropy (negative genetic correlations) between male fitness traits and female and offspring fitness traits. The large amount of unexplained variation suggests a potentially important role of local dominance and epistasis, including the possibility of segregating genetic incompatibilities.
Asunto(s)
Pinzones/fisiología , Infertilidad/genética , Envejecimiento , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Pinzones/embriología , Pinzones/genética , Endogamia , Masculino , Reproducción/genética , Reproducción/fisiologíaRESUMEN
Why do females of socially monogamous species engage in extra-pair copulations? This long-standing question remains a puzzle, because the benefits of female promiscuous behavior often do not seem to outweigh the costs. Genetic constraint models offer an answer by proposing that female promiscuity emerges through selection favoring alleles that are either beneficial for male reproductive success (intersexual pleiotropy hypothesis) or beneficial for female fecundity (intrasexual pleiotropy hypothesis). A previous quantitative genetic study on captive zebra finches, Taeniopygia guttata, reported support for the first, but not for the second hypothesis. Here, we re-examine both hypotheses based on data from lines selected for high and low male courtship rate. In contrast to previous conclusions, our new analyses clearly reject the hypothesis that male and female promiscuity are genetically homologous traits. We find some support for a positive genetic correlation between female promiscuity and fecundity. This study also shows that the behavioral outcome of extra-pair courtships primarily depends on individual-specific female preferences and not on the "attractiveness" of the social mate. In contrast, patterns of paternity are strongly influenced by the social partner and the pair bond, presumably reflecting variation in copulation behavior, fertility, or sperm competitiveness.
Asunto(s)
Pleiotropía Genética/fisiología , Preferencia en el Apareamiento Animal , Medio Social , Pájaros Cantores/fisiología , Animales , Cortejo , Femenino , Pinzones/genética , Pinzones/fisiología , Masculino , Apareamiento , Pájaros Cantores/genéticaRESUMEN
Many fields of science-including behavioral ecology-currently experience a heated debate about the extent to which publication bias against null findings results in a misrepresentative scientific literature. Here, we show a case of an extreme mismatch between strong positive support for an effect in the literature and a failure to detect this effect across multiple attempts at replication. For decades, researchers working with birds have individually marked their study species with colored leg bands. For the zebra finch Taeniopygia guttata, a model organism in behavioral ecology, many studies over the past 35 years have reported effects of bands of certain colors on male or female attractiveness and further on behavior, physiology, life history, and fitness. Only eight of 39 publications presented exclusively null findings. Here, we analyze the results of eight experiments in which we quantified the fitness of a total of 730 color-banded individuals from four captive populations (two domesticated and two recently wild derived). This sample size exceeds the combined sample size of all 23 publications that clearly support the "color-band effect" hypothesis. We found that band color explains no variance in either male or female fitness. We also found no heterogeneity in color-band effects, arguing against both context and population specificity. Analysis of unpublished data from three other laboratories strengthens the generality of our null finding. Finally, a meta-analysis of previously published results is indicative of selective reporting and suggests that the effect size approaches zero when sample size is large. We argue that our field-and science in general-would benefit from more effective means to counter confirmation bias and publication bias.
Asunto(s)
Color , Aptitud Genética , Preferencia en el Apareamiento Animal/fisiología , Pájaros Cantores/fisiología , Animales , Femenino , Pinzones/genética , Pinzones/fisiología , Masculino , Pájaros Cantores/genéticaRESUMEN
Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.
Asunto(s)
Inversión Cromosómica/genética , Fertilización , Cromosomas Sexuales/genética , Pájaros Cantores/fisiología , Espermatozoides/fisiología , Animales , Pinzones/genética , Pinzones/fisiología , Masculino , Fenotipo , Pájaros Cantores/genéticaRESUMEN
Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery.
Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Seudópodos/fisiología , Transporte Biológico , Retículo Endoplásmico/ultraestructura , Endosomas/ultraestructura , Exosomas/fisiología , Exosomas/ultraestructura , Células HEK293 , Humanos , Microscopía Electrónica de Rastreo , Seudópodos/ultraestructuraRESUMEN
The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.
Asunto(s)
Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Actinas/metabolismo , Amidas/farmacología , Animales , Técnicas Biosensibles , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente , Factor de Crecimiento Derivado de Plaquetas/farmacología , Piridinas/farmacología , Ratas , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismoRESUMEN
Migrating fibroblasts undergo contact inhibition of locomotion (CIL), a process that was discovered five decades ago and still is not fully understood at the molecular level. We identify the Slit2-Robo4-srGAP2 signaling network as a key regulator of CIL in fibroblasts. CIL involves highly dynamic contact protrusions with a specialized actin cytoskeleton that stochastically explore cell-cell overlaps between colliding fibroblasts. A membrane curvature-sensing F-BAR domain pre-localizes srGAP2 to protruding edges and terminates their extension phase in response to cell collision. A FRET-based biosensor reveals that Rac1 activity is focused in a band at the tip of contact protrusions, in contrast to the broad activation gradient in contact-free protrusions. SrGAP2 specifically controls the duration of Rac1 activity in contact protrusions, but not in contact-free protrusions. We propose that srGAP2 integrates cell edge curvature and Slit-Robo-mediated repulsive cues to fine-tune Rac1 activation dynamics in contact protrusions to spatiotemporally coordinate CIL.
Asunto(s)
Movimiento Celular/fisiología , Inhibición de Contacto/fisiología , Señales (Psicología) , Fibroblastos/citología , Proteínas Activadoras de GTPasa/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Técnicas Biosensibles , Fibroblastos/metabolismo , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Seudópodos/fisiología , Transducción de Señal , Proteína de Unión al GTP rac1/genéticaRESUMEN
A hallmark of the neuromuscular junction (NMJ) is the high density of acetylcholine receptors (AChRs) in the postsynaptic muscle membrane. The postsynaptic apparatus of the NMJ is organized by agrin secreted from motor neurons. The mechanisms that underlie the focal delivery of AChRs to the adult NMJ are not yet understood in detail. We previously showed that microtubule (MT) capture by the plus end-tracking protein CLASP2 regulates AChR density at agrin-induced AChR clusters in cultured myotubes via PI3 kinase acting through GSK3ß. Here we show that knockdown of the CLASP2-interaction partner LL5ß by RNAi and forced expression of a CLASP2 fragment blocking the CLASP2/LL5ß interaction inhibit microtubule capture. The same treatments impair focal vesicle delivery to the clusters. Consistent with these findings, knockdown of LL5ß at the NMJ in vivo reduces the density and insertion of AChRs into the postsynaptic membrane. MT capture and focal vesicle delivery to agrin-induced AChR clusters are also inhibited by microtubule- and actin-depolymerizing drugs, invoking both cytoskeletal systems in MT capture and in the fusion of AChR vesicles with the cluster membrane. Combined our data identify a transport system, organized by agrin through PI3 kinase, GSK3ß, CLASP2, and LL5ß, for precise delivery of AChR vesicles from the subsynaptic nuclei to the overlying synaptic membrane.
Asunto(s)
Actinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Agrina/metabolismo , Animales , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Fosfatidilinositol 3-Quinasas/metabolismoRESUMEN
Directional migration requires robust front/back polarity. We find that fibroblasts treated with platelet-derived growth factor (PDGF) and prepolarized by plating on a fibronectin line substrate exhibit persistent migration for hours. This does not occur in the absence of PDGF or on uniformly coated fibronectin substrates. Persistent migration arises from establishment of two functional modules at cell front and back. At the front, formation of a zone containing podosome-like structures (PLS) dynamically correlates with low RhoA and myosin activity and absence of a contractile lamella. At the back, myosin contractility specifically controls tail retraction with minimal crosstalk to the front module. The PLS zone is maintained in a dynamic steady state that preserves size and position relative to the cell front, allowing for long-term coordination of front and back modules. We propose that front/back uncoupling achieved by the PLS zone is crucial for persistent migration in the absence of directional cues.
Asunto(s)
Movimiento Celular , Citoesqueleto/metabolismo , Fibroblastos/fisiología , Animales , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibronectinas/farmacología , Miosinas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , RatasRESUMEN
BACKGROUND: Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS: HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS: The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.
RESUMEN
Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.
Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Transducción de Señal , Animales , Diferenciación Celular , Movimiento Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Ratones , Pez CebraRESUMEN
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Asunto(s)
Conos de Crecimiento/enzimología , MAP Quinasa Quinasa 7/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritas/metabolismo , Transporte de ARN , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Genoma/genética , Hipocampo/citología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Neuritas/enzimología , Fosforilación , Fosfotreonina/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
In many species that form socially monogamous pair bonds, a considerable proportion of the offspring is sired by extrapair males. This observation has remained a puzzle for evolutionary biologists: although mating outside the pair bond can obviously increase the offspring production of males, the benefits of such behavior to females are less clear, yet females are known to actively solicit extrapair copulations. For more than two decades adaptionist explanations have dominated the discussions, yet remain controversial, and genetic constraint arguments have been dismissed without much consideration. An intriguing but still untested hypothesis states that extrapair mating behavior by females may be affected by the same genetic variants (alleles) as extrapair mating behavior by males, such that the female behavior could evolve through indirect selection on the male behavior. Here we show that in the socially monogamous zebra finch, individual differences in extrapair mating behavior have a hereditary component. Intriguingly, this genetic basis is shared between the sexes, as shown by a strong genetic correlation between male and female measurements of extrapair mating behavior. Hence, positive selection on males to sire extrapair young will lead to increased extrapair mating by females as a correlated evolutionary response. This behavior leads to a fundamentally different view of female extrapair mating: it may exist even if females obtain no net benefit from it, simply because the corresponding alleles were positively selected in the male ancestors.
Asunto(s)
Aves/fisiología , Conducta Sexual Animal , Animales , Aves/genética , Femenino , Desequilibrio de Ligamiento , MasculinoRESUMEN
Mutations of the immunoglobulin superfamily proteins nephrin and Neph1 lead to congenital nephrotic syndrome in humans or mice. Neph proteins are three closely related molecules that are evolutionarily conserved and mediate cell recognition. Their importance for morphogenetic processes including the formation of the kidney filtration barrier in vertebrates and synaptogenesis in Caenorhabditis elegans has recently been uncovered. However, the individual morphogenetic function of mammalian Neph1-3 isoforms remained elusive. We demonstrate now that the Neph/nephrin family proteins can form cell-cell adhesion modules across species. Expression of all three mammalian Neph isoforms partially rescued mutant C. elegans lacking their Neph homolog syg-1 and restored synapse formation, suggesting a functional redundancy between the three isoforms. Strikingly, the rescue of defective synaptic connectivity was prevented by deletion of the highly conserved cytoplasmic PSD95/Dlg/ZO-1-binding motif of SYG-1/Neph proteins, indicating the critical role of this intracellular signaling motif for SYG-1/Neph-dependent morphogenetic events. To determine the significance of Neph isoform redundancy for vertebrate kidney development, we analyzed the expression pattern and the functional role of Neph proteins in zebrafish. In situ hybridizations identified zNeph1 and zNeph2 as glomerular proteins. Morpholino knockdown of either zNeph1 or zNeph2 resulted in loss of slit diaphragms and leakiness of the glomerular filtration barrier. This is the first report utilizing C. elegans to study mammalian Neph/nephrin protein function and to demonstrate a functional overlap of Neph1-3 proteins. Furthermore, we identify Neph2 as a novel critical regulator of glomerular function, indicating that both Neph1 and Neph2 are required for glomerular maintenance and development.