Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1334862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318533

RESUMEN

Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.

2.
Nat Neurosci ; 26(7): 1295-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308660

RESUMEN

Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Femenino , Drosophila/fisiología , Proteínas de Drosophila/genética , Sistema Nervioso , Neuronas , Conducta Social , Cortejo , Drosophila melanogaster/fisiología , Conducta Sexual Animal/fisiología , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética
4.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617965

RESUMEN

The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.


Asunto(s)
Núcleo Celular/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Transcripción Genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Ascorbato Peroxidasas/metabolismo , Biotinilación , Regulación de la Expresión Génica , Humanos , Espectrometría de Masas , Mutación/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteolisis , Ratas Sprague-Dawley
6.
Nat Struct Mol Biol ; 26(7): 557-566, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270476

RESUMEN

Neurons are among the most compartmentalized and interactive of all cell types. Like all cells, neurons use proteins as the main sensors and effectors. The modification of the proteome in axons and dendrites is used to guide the formation of synaptic connections and to store information. In this Review, we discuss the data indicating that an important source of protein for dendrites, axons and their associated elements is provided by the local synthesis of proteins. We review the data indicating the presence of the machinery required for protein synthesis, the direct visualization and demonstration of protein synthesis, and the established functional roles for local translation for many different neuronal functions. Finally, we consider the open questions and future directions in this field.


Asunto(s)
Neuronas/citología , Biosíntesis de Proteínas , Animales , Humanos , Microscopía , Neuronas/metabolismo , Neuronas/ultraestructura , Procesamiento Proteico-Postraduccional , ARN Mensajero/análisis , ARN Mensajero/genética , Ribosomas/genética , Ribosomas/ultraestructura
7.
Nat Neurosci ; 21(10): 1493, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30097659

RESUMEN

In the version of this article initially published, a Supplementary Fig. 6f was cited in the last paragraph of the Results. No such panel exists; the citation has been deleted. The error has been corrected in the HTML and PDF versions of the article.

8.
Nat Neurosci ; 21(7): 1004-1014, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950670

RESUMEN

A localized transcriptome at the synapse facilitates synapse-, stimulus- and transcript-specific local protein synthesis in response to neuronal activity. While enzyme-mediated mRNA modifications are known to regulate cellular mRNA turnover, the role of these modifications in regulating synaptic RNA has not been studied. We established low-input m6A-sequencing of synaptosomal RNA to determine the chemically modified local transcriptome in healthy adult mouse forebrains and identified 4,469 selectively enriched m6A sites in 2,921 genes as the synaptic m6A epitranscriptome (SME). The SME is functionally enriched in synthesis and modulation of tripartite synapses and in pathways implicated in neurodevelopmental and neuropsychiatric diseases. Interrupting m6A-mediated regulation via knockdown of readers in hippocampal neurons altered expression of SME member Apc, resulting in synaptic dysfunction including immature spine morphology and dampened excitatory synaptic transmission concomitant with decreased clusters of postsynaptic density-95 (PSD-95) and decreased surface expression of AMPA receptor subunit GluA1. Our findings indicate that chemical modifications of synaptic mRNAs critically contribute to synaptic function.


Asunto(s)
Adenosina/análogos & derivados , Prosencéfalo/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Adenosina/genética , Adenosina/metabolismo , Animales , Ratones , Transcriptoma
9.
Neuron ; 98(1): 127-141.e7, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621484

RESUMEN

Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/metabolismo , Factores de Empalme de ARN/fisiología , Transmisión Sináptica/fisiología , Proteína 1 de Membrana Asociada a Vesículas/biosíntesis , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/química , Factores de Empalme de ARN/análisis , Factores de Empalme de ARN/deficiencia , Proteínas SNARE/análisis , Proteínas SNARE/biosíntesis , Proteína 1 de Membrana Asociada a Vesículas/análisis
10.
Neuron ; 98(1): 49-66.e9, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621490

RESUMEN

Astrocytes are complex bushy cells that serve important functions through close contacts between their processes and synapses. However, the spatial interactions and dynamics of astrocyte processes relative to synapses have proven problematic to study in adult living brain tissue. Here, we report a genetically targeted neuron-astrocyte proximity assay (NAPA) to measure astrocyte-synapse spatial interactions within intact brain preparations and at synaptic distance scales. The method exploits resonance energy transfer between extracellularly displayed fluorescent proteins targeted to synapses and astrocyte processes. We validated the method in the striatal microcircuitry following in vivo expression. We determined the proximity of striatal astrocyte processes to distinct neuronal input pathways, to D1 and D2 medium spiny neuron synapses, and we evaluated how astrocyte-to-excitatory synapse proximity changed following cortical afferent stimulation, during ischemia and in a model of Huntington's disease. NAPA provides a simple approach to measure astrocyte-synapse spatial interactions in a variety of experimental scenarios. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/fisiología , Marcación de Gen/métodos , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Astrocitos/química , Astrocitos/ultraestructura , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/química , Neuronas/ultraestructura , Sinapsis/química , Sinapsis/ultraestructura
11.
Dev Neurobiol ; 78(3): 331-339, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314718

RESUMEN

RNA localization to neuronal dendrites and axons is increasingly recognized as a significant and widespread mechanism of gene expression control in neurons. High-throughput RNA sequencing is rapidly expanding the universe of known localized mRNAs. Although there are inherent difficulties in preparing sequencing libraries from dendrites and axons in the context of intact brain, genetic labeling strategies have paved the way for improved studies of this type. As the list of localized mRNAs grows, there is increasing need for functional validation of localized transcripts-that is, do particular localized transcripts serve demonstrable physiologic functions in axons or dendrites? Finally, specific details about what localized mRNAs do once they reach distal processes have long been elusive. Recent work using single-molecule imaging and other techniques is starting to fill in the picture of how transcripts navigate the localized environment and undergo activity-dependent translational de-repression. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 331-339, 2018.


Asunto(s)
Neuronas/metabolismo , Transporte de ARN/fisiología , Animales
12.
Sci Rep ; 7(1): 17377, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234016

RESUMEN

Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo , Poliadenilación , Receptor Notch1/genética , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptor Notch1/metabolismo
13.
Elife ; 62017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28891791

RESUMEN

Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/metabolismo , Aprendizaje , Plasticidad Neuronal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Escala de Evaluación de la Conducta , Condicionamiento Clásico , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Sinapsis/metabolismo
14.
Curr Opin Neurobiol ; 45: 78-84, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28502891

RESUMEN

Synapse-to-nucleus communication is essential for neural development, plasticity, and repair. In addition to fast electrochemical signaling, neurons employ a slower mechanism of protein transport from synapse-to-nucleus. This mechanism provides potential advantages, including the encoding of spatial information. Many synaptonuclear signaling proteins are transported from the postsynaptic compartment to the nucleus in an activity-dependent manner. The phosphorylation state of two such proteins, CRTC1 and Jacob, is dependent on the stimulus type. While most studies have focused on postsynaptic synaptonuclear communication, a transcriptional co-repressor, CtBP1, was recently discovered to undergo activity-dependent translocation from the presynaptic compartment to the nucleus. Recent evidence indicates that synapse-to-nucleus communication could be cell type-specific, including the identification of a distinct mechanism of excitation-transcription coupling in inhibitory neurons.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Neuronas/fisiología , Transporte de Proteínas/fisiología
15.
Front Mol Neurosci ; 10: 39, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275336

RESUMEN

The persistence of long-lasting changes in synaptic connectivity that underlie long-term memory require new RNA and protein synthesis. To elucidate the temporal pattern of gene expression that gives rise to long-lasting neuronal plasticity, we analyzed differentially-expressed (DE) RNAs in mouse hippocampal slices following induction of late phase long-term potentiation (L-LTP) specifically within pyramidal excitatory neurons using Translating Ribosome Affinity Purification RNA sequencing (TRAP-seq). We detected time-dependent changes in up- and down-regulated ribosome-associated mRNAs over 2 h following L-LTP induction, with minimal overlap of DE transcripts between time points. TRAP-seq revealed greater numbers of DE transcripts and magnitudes of LTP-induced changes than RNA-seq of all cell types in the hippocampus. Neuron-enriched transcripts had greater changes at the ribosome-loading level than the total RNA level, while RNA-seq identified many non-neuronal DE mRNAs. Our results highlight the importance of considering both time course and cell-type specificity in activity-dependent gene expression during memory formation.

16.
Neuron ; 93(4): 731-736, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28231461

RESUMEN

Landing a job as an assistant professor or independent investigator in neuroscience in an academic institution or research institute depends on the accomplishments young scientists make during years of training as graduate students and postdoctoral fellows. This training prepares scientists for an array of exciting job opportunities, one of which is as a faculty member or independent investigator. My goal in this NeuroView is to provide tips about the job search for young scientists who have decided to enter the junior faculty/independent investigator job market. Rather than serving as a "protocol for getting a job," these tips are aimed at providing information that will make each candidate better prepared for her or his job search.


Asunto(s)
Selección de Profesión , Docentes , Solicitud de Empleo , Neurociencias , Investigadores/educación , Estudiantes , Humanos
17.
BMC Biol ; 14: 40, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27197636

RESUMEN

The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.


Asunto(s)
Encéfalo/fisiología , Memoria/fisiología , Animales , Epigenómica , Hipocampo/fisiología , Humanos , Modelos Animales , Neuronas/fisiología , Columna Vertebral/fisiología , Sinapsis/fisiología
18.
Cell ; 165(3): 606-19, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27104978

RESUMEN

Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.


Asunto(s)
Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Animales , Encéfalo/citología , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Exones , Células HEK293 , Humanos , Intrones , Ratones , Complejos Multiproteicos/metabolismo , Precursores del ARN/metabolismo
19.
Neuron ; 89(1): 113-28, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26687839

RESUMEN

Human genetic studies have identified the neuronal RNA binding protein, Rbfox1, as a candidate gene for autism spectrum disorders. While Rbfox1 functions as a splicing regulator in the nucleus, it is also alternatively spliced to produce cytoplasmic isoforms. To investigate the function of cytoplasmic Rbfox1, we knocked down Rbfox proteins in mouse neurons and rescued with cytoplasmic or nuclear Rbfox1. Transcriptome profiling showed that nuclear Rbfox1 rescued splicing changes, whereas cytoplasmic Rbfox1 rescued changes in mRNA levels. iCLIP-seq of subcellular fractions revealed that Rbfox1 bound predominantly to introns in nascent RNA, while cytoplasmic Rbox1 bound to 3' UTRs. Cytoplasmic Rbfox1 binding increased target mRNA stability and translation, and Rbfox1 and miRNA binding sites overlapped significantly. Cytoplasmic Rbfox1 target mRNAs were enriched in genes involved in cortical development and autism. Our results uncover a new Rbfox1 regulatory network and highlight the importance of cytoplasmic RNA metabolism to cortical development and disease.


Asunto(s)
Trastorno Autístico/genética , Estriol/análogos & derivados , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Citoplasma/metabolismo , Estriol/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Ratones Endogámicos C57BL , Factores de Empalme de ARN
20.
Front Mol Neurosci ; 8: 48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26388727

RESUMEN

Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...