Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184369

RESUMEN

Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.


Asunto(s)
Fibrilación Atrial , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
J Proteome Res ; 20(9): 4452-4461, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34351778

RESUMEN

Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 µL to sub-µL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (surfactant-assisted one-pot sample processing at the standard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low µL volume, we have systematically evaluated its processing volume at 10-200 µL using 100 human cells. The processing volume of 50 µL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.


Asunto(s)
Proteoma , Proteómica , Animales , Cromatografía Liquida , Perfilación de la Expresión Génica , Espectrometría de Masas , Ratones
3.
Neurotrauma Rep ; 2(1): 322-329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34318300

RESUMEN

Antibody mediated strategies for protein biomarker detection are common, but may limit discovery. We hypothesized that the use of antibody-free proteomics is feasible for detecting protein biomarkers in plasma of patients sustaining major trauma. A subset of subjects with major trauma from a prospective observational trial were analyzed. Patients were assigned to one of four groups based on their presenting Abbreviated Injury Severity Score (AIS). Sensitive, antibody-free selective reaction monitoring (SRM) mass spectrometry (MS), with spiked-in isotopically labeled synthetic peptides, was used for targeted protein quantification of a panel of 10 prospective targets. An overall tiered sensitivity analytical approach was used for peptide detection and quantification based upon plasma immunoaffinity depletion and PRISM fractionation. Forty-four patients were included in the analysis, of which 82% were men with a mean age of 50 (±19) years. Half had isolated head injury (n = 22), with the remaining patients experiencing multiple injuries or polytrauma (n = 14), isolated body injury (n = 2), or minor injury (n = 6). Peptides from 3 proteins (vascular adhesion molecule 1 [VCAM1], intercellular adhesion molecule 1 [ICAM1], and matrix metalloproteinase 9 [MMP9]) were detected and quantified in non-depleted processed plasma. Peptides from 2 proteins (angiopoietin 2 [Ang2] and plasminogen activator inhibitor-1 [PAI1]) were detected and quantification in depleted plasma, whereas the remaining 5 of the 10 prospective targets were undetected. VCAM1 (p = 0.02) and MMP9 (p = 0.03) were significantly upregulated in in the major trauma groups (1-3) versus mild injury group (4), whereas the others were not. There were no differences in protein expression between patients with traumatic brain injury (TBI; groups 1 and 2) versus those without TBI (groups 3 and 4). We detected non-specific upregulation of proteins reflecting blood-brain barrier breakdown in severely injured patients, indicating label-free MS techniques are feasible and may be informative.

4.
Methods Mol Biol ; 2259: 247-257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687720

RESUMEN

Protein phosphorylation is a critical posttranslational modification (PTM), with cell signaling networks being tightly regulated by protein phosphorylation. Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides that often have multiple phosphorylation sites. Herein, we describe an MS-based phosphoproteomics protocol for effective quantitative analysis of hydrophilic phosphopeptides. This protocol was built upon a simple tandem mass tag (TMT)-labeling method for significantly increasing peptide hydrophobicity, thus effectively enhancing RPLC-MS analysis of hydrophilic peptides. Through phosphoproteomic analyses of MCF7 cells, this method was demonstrated to greatly increase the number of identified hydrophilic phosphopeptides and improve MS signal detection. With the TMT labeling method, we were able to identify a previously unreported phosphopeptide from the G protein-coupled receptor (GPCR) CXCR3, QPpSSSR, which is thought to be important in regulating receptor signaling. This protocol is easy to adopt and implement and thus should have broad utility for effective RPLC-MS analysis of the hydrophilic phosphoproteome as well as other highly hydrophilic analytes.


Asunto(s)
Fosfopéptidos/análisis , Proteómica/métodos , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoprecipitación/métodos , Células MCF-7 , Fosfopéptidos/aislamiento & purificación , Proteoma/análisis , Proteoma/aislamiento & purificación , Espectrometría de Masas en Tándem/métodos
5.
Commun Biol ; 4(1): 265, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649493

RESUMEN

Large numbers of cells are generally required for quantitative global proteome profiling due to surface adsorption losses associated with sample processing. Such bulk measurement obscures important cell-to-cell variability (cell heterogeneity) and makes proteomic profiling impossible for rare cell populations (e.g., circulating tumor cells (CTCs)). Here we report a surfactant-assisted one-pot sample preparation coupled with mass spectrometry (MS) method termed SOP-MS for label-free global single-cell proteomics. SOP-MS capitalizes on the combination of a MS-compatible nonionic surfactant, n-Dodecyl-ß-D-maltoside, and hydrophobic surface-based low-bind tubes or multi-well plates for 'all-in-one' one-pot sample preparation. This 'all-in-one' method including elimination of all sample transfer steps maximally reduces surface adsorption losses for effective processing of single cells, thus improving detection sensitivity for single-cell proteomics. This method allows convenient label-free quantification of hundreds of proteins from single human cells and ~1200 proteins from small tissue sections (close to ~20 cells). When applied to a patient CTC-derived xenograft (PCDX) model at the single-cell resolution, SOP-MS can reveal distinct protein signatures between primary tumor cells and early metastatic lung cells, which are related to the selection pressure of anti-tumor immunity during breast cancer metastasis. The approach paves the way for routine, precise, quantitative single-cell proteomics.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glucósidos/química , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteoma , Proteómica , Análisis de la Célula Individual , Tensoactivos/química , Animales , Neoplasias de la Mama/patología , Cromatografía Liquida , Femenino , Humanos , Neoplasias Pulmonares/secundario , Células MCF-7 , Ratones , Micrometástasis de Neoplasia , Células Neoplásicas Circulantes/patología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
J Cardiovasc Dev Dis ; 8(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572147

RESUMEN

Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.

7.
J Vis Exp ; (165)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33226031

RESUMEN

Protein analysis of small numbers of human cells is primarily achieved by targeted proteomics with antibody-based immunoassays, which have inherent limitations (e.g., low multiplex and unavailability of antibodies for new proteins). Mass spectrometry (MS)-based targeted proteomics has emerged as an alternative because it is antibody-free, high multiplex, and has high specificity and quantitation accuracy. Recent advances in MS instrumentation make MS-based targeted proteomics possible for multiplexed quantification of highly abundant proteins in single cells. However, there is a technical challenge for effective processing of single cells with minimal sample loss for MS analysis. To address this issue, we have recently developed a convenient protein carrier-assisted one-pot sample preparation coupled with liquid chromatography (LC) - selected reaction monitoring (SRM) termed cLC-SRM for targeted proteomics analysis of small numbers of human cells. This method capitalizes on using the combined excessive exogenous protein as a carrier and low-volume one-pot processing to greatly reduce surface adsorption losses as well as high-specificity LC-SRM to effectively address the increased dynamic concentration range due to the addition of exogeneous carrier protein. Its utility has been demonstrated by accurate quantification of most moderately abundant proteins in small numbers of cells (e.g., 10-100 cells) and highly abundant proteins in single cells. The easy-to-implement features and no need for specific devices make this method readily accessible to most proteomics laboratories. Herein we have provided a detailed protocol for cLC-SRM analysis of small numbers of human cells including cell sorting, cell lysis and digestion, LC-SRM analysis, and data analysis. Further improvements in detection sensitivity and sample throughput are needed towards targeted single-cell proteomics analysis. We anticipate that cLC-SRM will be broadly applied to biomedical research and systems biology with the potential of facilitating precision medicine.


Asunto(s)
Proteómica/métodos , Alquilación , Recuento de Células , Fraccionamiento Celular , Línea Celular , Cromatografía Liquida , Análisis de Datos , Receptores ErbB/metabolismo , Citometría de Flujo , Humanos , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas/métodos , Desnaturalización Proteica , Tripsina/metabolismo
9.
Commun Biol ; 3(1): 453, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814826

RESUMEN

Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Colon , Enterocitos/metabolismo , Proteoma , Células Madre/metabolismo , Transcriptoma , Animales , Biomarcadores , Autorrenovación de las Células/genética , Biología Computacional/métodos , Enterocitos/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunofenotipificación , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Proteómica , Procesamiento Postranscripcional del ARN , Células Madre/citología
10.
PLoS Genet ; 15(2): e1007962, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30721228

RESUMEN

Multiple syndromes share congenital heart and craniofacial muscle defects, indicating there is an intimate relationship between the adjacent cardiac and pharyngeal muscle (PM) progenitor fields. However, mechanisms that direct antagonistic lineage decisions of the cardiac and PM progenitors within the anterior mesoderm of vertebrates are not understood. Here, we identify that retinoic acid (RA) signaling directly promotes the expression of the transcription factor Nr2f1a within the anterior lateral plate mesoderm. Using zebrafish nr2f1a and nr2f2 mutants, we find that Nr2f1a and Nr2f2 have redundant requirements restricting ventricular cardiomyocyte (CM) number and promoting development of the posterior PMs. Cre-mediated genetic lineage tracing in nr2f1a; nr2f2 double mutants reveals that tcf21+ progenitor cells, which can give rise to ventricular CMs and PM, more frequently become ventricular CMs potentially at the expense of posterior PMs in nr2f1a; nr2f2 mutants. Our studies reveal insights into the molecular etiology that may underlie developmental syndromes that share heart, neck and facial defects as well as the phenotypic variability of congenital heart defects associated with NR2F mutations in humans.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Proteínas de Unión al ADN/metabolismo , Miocitos Cardíacos/metabolismo , Músculos Faríngeos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Factor de Transcripción COUP II/genética , Linaje de la Célula/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Humanos , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Animales , Mutación , Miocitos Cardíacos/citología , Músculos Faríngeos/citología , Músculos Faríngeos/embriología , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética , Tretinoina/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
Mol Cell Probes ; 28(5-6): 211-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24647265

RESUMEN

The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were developed from 16S rDNA sequences to be useful for the specific detection and quantification of S. suberifaciens. Quantitative PCR (qPCR) protocols specifically amplified DNA from the type strain of S. suberifaciens (LMG 17323) and other members of this species but not from other members of the Sphingomonadaceae. The detection limit was as little as 100 fg DNA (equivalent to 2 × 10(2) cells) in the qPCR. Detection was successful from soils inoculated with as little as 1 × 10(3) CFU/g soil. DNA isolated from naturally infested soils and diseased lettuce roots was amplified and sequenced fragments were identical or nearly identical to 16S rDNA sequences from S. suberifaciens. In growth chamber experiments, there was a positive correlation between disease severity and S. suberifaciens population levels in roots and soil, as detected by qPCR. Detection levels were below population levels of the pathogen necessary for disease development.


Asunto(s)
Cartilla de ADN/genética , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Sphingomonadaceae/genética , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/química , Variación Genética , Lactuca/microbiología , Datos de Secuencia Molecular , Raíces de Plantas/microbiología , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Microbiología del Suelo , Especificidad de la Especie , Sphingomonadaceae/clasificación
12.
Microb Ecol ; 55(2): 293-310, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17619214

RESUMEN

The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity to each other and remain distinct from other bacterial communities. This study reveals the effects of agricultural land management practices on soil bacterial community composition and diversity in a large-scale, long-term replicated study where the effect of soil type on community attributes was removed.


Asunto(s)
Agricultura , Bacterias/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Microbiología del Suelo , Análisis de Varianza , Bacterias/genética , Clonación Molecular , Conservación de los Recursos Naturales , ADN Bacteriano/genética , ADN Ribosómico/genética , Solanum lycopersicum/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Mycologia ; 98(3): 384-92, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17040067

RESUMEN

We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological indices of soil microfungal community composition. Normalized counts of colony morphotypes on dichloran rose bengal medium were used to estimate species richness (S) and evenness (J) and to calculate Shannon's diversity (H) and Simpson's (SI) dominance indices. Isolates were obtained by dilution plating techniques from litter and soil layer samples taken from Douglas-fir forest and clear-cut areas at two locations in the Cascade Mountains. The highest correspondence (97%) was observed between taxonomic identification and RFLP patterns (32:33). Cladistic analyses of PCR-RFLP patterns indicated an 81% correspondence between RFLP patterns:colony morphotypes (33:41). A correspondence of 78% was observed between traditional taxonomic identification:colony morphotypes (32:41). Statistical analyses of ecological indices based on quantitative application of the colony morphotyping method indicated significant differences (P < 0.05) in fungal community composition between forested and clear-cut areas at the Toad Road site but not at the Falls Creek site. Comparisons of ecological indices based on traditional identification of taxa by microscopic characterization on defined culture media resulted in identical findings of statistical significance. The colony morphotyping approach is proposed as a screening method to identify potential effects of land management practices, edaphic factors and pollutants on microfungal diversity.


Asunto(s)
Hongos/clasificación , Hongos/crecimiento & desarrollo , Variación Genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Microbiología del Suelo , Medios de Cultivo , Dermatoglifia del ADN/métodos , ADN de Hongos/análisis , Ecosistema , Hongos/genética , Hongos/aislamiento & purificación , Técnicas de Tipificación Micológica/métodos , Análisis de Secuencia de ADN
14.
BMC Microbiol ; 5: 28, 2005 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15904497

RESUMEN

BACKGROUND: The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmental samples provide varying degrees of success at discriminating against plant DNA while maintaining a broad range of compatibility. Typically, it has been necessary to use multiple primer sets to accommodate the range of fungi under study, potentially creating artificial distinctions for fungal sequences that amplify with more than one primer set. RESULTS: Numerous sequences for PCR primers were tested to develop PCR assays with a wide range of fungal compatibility and high discrimination from plant DNA. A nested set of 4 primers was developed that reflected these criteria and performed well amplifying ITS regions of fungal rDNA. Primers in the 5.8S sequence were also developed that would permit separate amplifications of ITS1 and ITS2. A range of basidiomycete fruiting bodies and ascomycete cultures were analyzed with the nested set of primers and Restriction Fragment Length Polymorphism (RFLP) fingerprinting to demonstrate the specificity of the assay. Single ectomycorrhizal root tips were similarly analyzed. These primers have also been successfully applied to Quantitative PCR (QPCR), Length Heterogeneity PCR (LH-PCR) and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of fungi. A set of wide-range plant-specific primers were developed at positions corresponding to one pair of the fungal primers. These were used to verify that the host plant DNA was not being amplified with the fungal primers. CONCLUSION: These plant primers have been successfully applied to PCR-RFLP analyses of forest plant tissues from above- and below-ground samples and work well at distinguishing a selection of plants to the species level. The complete set of primers was developed with an emphasis on discrimination between plant and fungal sequences and should be particularly useful for studies of fungi where samples also contain high levels of background plant DNA, such as verifying ectomycorrhizal morphotypes or characterizing phylosphere communities.


Asunto(s)
ADN de Hongos/genética , Hongos/genética , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN , ADN de Hongos/análisis , ADN Intergénico , Filogenia , Microbiología del Suelo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...