Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(51): 44226-44230, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30543403

RESUMEN

The low-frequency (100-1250 Hz) acoustic properties of metal-organic framework (MOF) materials were examined in impedance tube experiments. The anomalously high sound transmission loss of HKUST-1, FeBTC, and MIL-53(Al) quantitatively demonstrated that these prototypical MOFs are absorptive acoustic metamaterials. To the best of our knowledge, this is the first example of MOFs that have been demonstrated to be acoustic metamaterials. Low-frequency acoustic dampening by subwavelength MOF metamaterials is likely due to sound dissipation and absorption facilitated by multiple internal reflections within the microporous framework structure. Modification of MIL-53(Al) with flexible organic linkers clarified that acoustic signatures of the MOFs may be tailored to add or alter certain diagnostic acoustic signatures. These results may be applied to the rational design of lightweight sound-insulating construction materials and acoustic contrast agents for subsurface mapping and monitoring applications at low frequency (100-1250 Hz).

2.
Sci Rep ; 6: 27805, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302196

RESUMEN

Metal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added. MIL-101(Cr)/GO in methanol exhibited a significant increase in the thermal conductivity (by approximately 50%) relative to that of the intrinsic nanoMIL-101(Cr) in methanol. The thermal conductivity of the base fluid (methanol) was increased by about 20%. The increase in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to GO functionalization is explained using a classical Maxwell model.

3.
Langmuir ; 31(27): 7533-43, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26079871

RESUMEN

Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m(2). Above this concentration and up to 76 µmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

4.
Nat Commun ; 5: 4368, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25006832

RESUMEN

Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane > chlorodifluoromethane > chlorotrifluoromethane > tetrafluoromethane > methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

5.
Langmuir ; 30(21): 6120-8, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24810708

RESUMEN

Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar. Measured d001 values increased in stepwise fashion and sorbed H2O concentrations increased continuously with increasing percent H2O saturation in scCO2, closely following previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show H2O and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types of H2O and CO2 with distinct chemical environments. Based on the absorbance of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, the sorbed CO2 concentration increases dramatically at sorbed H2O concentrations from 0 to 4 mmol/g. Sorbed CO2 then sharply decreases as sorbed H2O increases from 4 to 10 mmol/g. With even higher sorbed H2O concentrations as saturation of H2O in scCO2 was approached, the concentration of sorbed CO2 decreased asymptotically. Two models, one involving space filling and the other a heterogeneous distribution of integral hydration states, are discussed as possible mechanisms for H2O and CO2 intercalations in montmorillonite. The swelling/shrinkage of montmorillonite could affect solid volume, porosity, and permeability of shales. Consequently, the results may aid predictions of shale caprock integrity in large-scale GCS as well as methane transmissivity in enhanced gas recovery operations.

6.
Rev Sci Instrum ; 85(4): 044102, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24784630

RESUMEN

A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve. However, after approximately 2.5 h, the trend reversed, and a carbonate precipitate began to form on the forsterite surface, exposing dramatic chemical changes in the thin-water film. Collectively, these applications illustrate how the high-pressure IR titration system can provide molecular-level information about the interactions between variably wet scCO2 and minerals relevant to underground storage of CO2 (geologic carbon sequestration). The apparatus could also be utilized to study high-pressure interfacial chemistry in other areas such as catalysis, polymerization, food processing, and oil and gas recovery.

7.
Langmuir ; 28(18): 7125-8, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22533894

RESUMEN

The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

8.
Artículo en Inglés | MEDLINE | ID: mdl-22516123

RESUMEN

The uptake of (18)O by scC(16)O(2) in mixtures containing liquid H(2)(18)O was followed with Raman spectroscopy using a specially designed high-pressure optical cell. Characteristic bands from the C(16)O(18)O and C(18)O(2) molecules were identified in the supercritical phase and measured in the spectra as a function of time after introducing the liquid H(2)(18)O into the scC(16)O(2). Temporal dependence indicated the process was diffusion-limited in our cell for both C(16)O(18)O and C(18)O(2). The ratio of concentrations of the (18)O-labeled CO(2) molecules, C(18)O(2)/C(16)O(18)O, was much higher than a random distribution of the isotopes for the system expected at equilibrium. The results are consistent with previous studies showing both rapid kinetics for oxygen exchange in aqueous solutions and the role of CO(2) transport at liquid water interfaces. More importantly, they demonstrate the potential for using Raman spectroscopy with (18)O isotopic labeling in scCO(2) reaction studies with the recently determined frequency and intensity characteristics of the Fermi dyad peaks from (18)O-containing CO(2) molecules.


Asunto(s)
Dióxido de Carbono/química , Oxígeno/química , Espectrometría Raman , Agua/química , Calibración , Difusión , Análisis de los Mínimos Cuadrados , Isótopos de Oxígeno , Factores de Tiempo
9.
Phys Chem Chem Phys ; 14(8): 2560-6, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22083039

RESUMEN

We report the first Raman spectra of fully (18)O-labeled supercritical CO(2) (scCO(2)) and various isotopic mixtures. The experimental results, coupled with ab initio molecular dynamics calculations, demonstrate that the frequencies assigned to the Fermi dyad of the CO(2) molecule transpose upon isotopic labeling of both oxygen atoms. Although the transposition of the Fermi dyad of CO(2) gas due to isotopic substitution has been discussed before, this is the first confirmation of the effect in the Raman spectrum of the supercritical fluid and provides necessary groundwork for future Raman spectroscopy studies of reactions in this important medium. More importantly, the work yields a quantitative assessment of the mixing of states upon labeling that provides the needed clarification concerning the pedigree of the assignments for the dyad of CO(2) under supercritical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...