Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8363, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333500

RESUMEN

Polarized exocytosis induced by local Cdc42 GTPase activity results in membrane flows that deplete low-mobility membrane-associated proteins. A reaction-diffusion particle model comprising Cdc42 positive feedback activation, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis shows that flow-induced depletion of low mobility GAPs promotes polarization. We modified Cdc42 mobility in Schizosaccharomyces pombe by replacing its prenylation site with 1, 2 or 3 repeats of the Rit C-terminal membrane-binding domain (ritC), yielding alleles with progressively lower mobility and increased flow-coupling. While Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC are inviable, in agreement with model's predictions. Deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells, verifying the model's prediction that GAP deletion increases Cdc42 activity at the expense of polarization. Our work demonstrates how membrane flows are an integral part of Cdc42-driven pattern formation and require Cdc42-GTP to turn over faster than the surface on which it forms.


Asunto(s)
Membrana Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteína de Unión al GTP cdc42 , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Membrana Celular/metabolismo , Polaridad Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Forma de la Célula , Exocitosis/fisiología , Endocitosis
2.
Genetics ; 225(3)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37758508

RESUMEN

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Asunto(s)
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Alelos , Comprensión , Bases de Datos Genéticas , Fenotipo
3.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503115

RESUMEN

Local Cdc42 GTPase activation promotes polarized exocytosis, resulting in membrane flows that deplete low-mobility membrane-associated proteins from the growth region. To investigate the self-organizing properties of the Cdc42 secretion-polarization system under membrane flow, we developed a reaction-diffusion particle model. The model includes positive feedback activation of Cdc42, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis. Simulations show how polarization relies on flow-induced depletion of low mobility GAPs. To probe the role of Cdc42 mobility in the fission yeast Schizosaccharomyces pombe, we changed its membrane binding properties by replacing its prenylation site with 1, 2 or 3 repeats of the Rit1 C terminal membrane binding domain (ritC), yielding alleles with progressively lower unbinding and diffusion rates. Concordant modelling predictions and experimental observations show that lower Cdc42 mobility results in lower Cdc42 activation level and wider patches. Indeed, while Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC is inviable. The model further predicts that GAP depletion increases Cdc42 activity at the expense of loss of polarization. Experiments confirm this prediction, as deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells. Our combined experimental and modelling studies demonstrate how membrane flows are an integral part of Cdc42-driven pattern formation.

4.
FEBS J ; 290(3): 669-676, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797957

RESUMEN

Even the simplest cells show a remarkable degree of intracellular patterning. Like developing multicellular organisms, single cells break symmetry to establish polarity axes, pattern their cortex and interior, and undergo morphogenesis to acquire sometimes complex shapes. Symmetry-breaking and molecular patterns can be established through coupling of negative and positive feedback reactions in biochemical reaction-diffusion systems. Physical forces, perhaps best studied in the contraction of the metazoan acto-myosin cortex, which induces cortical and cytoplasmic flows, also serve to pattern-associated components. A less investigated physical perturbation is the in-plane flow of plasma membrane material caused by membrane trafficking. In this review, we discuss how bulk membrane flows can be generated at sites of active polarized secretion and growth, how they affect the distribution of membrane-associated proteins, and how they may be harnessed for patterning and directional movement in cells across the tree of life.


Asunto(s)
Polaridad Celular , Miosinas , Animales , Membrana Celular/metabolismo , Miosinas/metabolismo , Citoplasma/metabolismo , Proteínas de la Membrana
5.
Semin Cell Dev Biol ; 133: 83-95, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35148940

RESUMEN

Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fusión Celular , Transducción de Señal , Feromonas/metabolismo
6.
Curr Biol ; 32(21): 4752-4761.e10, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36202103

RESUMEN

Secretory vesicle clusters transported on actin filaments by myosin V motors for local secretion underlie various cellular processes, such as neurotransmitter release at neuronal synapses,1 hyphal steering in filamentous fungi,2,3 and local cell wall digestion preceding the fusion of yeast gametes.4 During fission yeast Schizosaccharomyces pombe gamete fusion, the actin fusion focus assembled by the formin Fus1 concentrates secretory vesicles carrying cell wall digestive enzymes.5,6,7 The position and coalescence of the vesicle focus are controlled by local signaling and actin-binding proteins to prevent inappropriate cell wall digestion that would cause lysis,6,8,9,10 but the mechanisms of focusing have been elusive. Here, we show that the regulatory N terminus of Fus1 contains an intrinsically disordered region (IDR) that mediates Fus1 condensation in vivo and forms dense assemblies that exclude ribosomes. Fus1 lacking its IDR fails to concentrate in a tight focus and causes cell lysis during attempted cell fusion. Remarkably, the replacement of Fus1 IDR with a heterologous low-complexity region that forms molecular condensates fully restores Fus1 focusing and function. By contrast, the replacement of Fus1 IDR with a domain that forms more stable oligomers restores focusing but poorly supports cell fusion, suggesting that condensation is tuned to yield a selectively permeable structure. We propose that condensation of actin structures by an IDR may be a general mechanism for actin network organization and the selective local concentration of secretory vesicles.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Forminas , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Actinas/metabolismo , Fusión Celular , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo
7.
J Cell Sci ; 135(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36148799

RESUMEN

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticuerpos de Dominio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Colorantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticuerpos de Dominio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
8.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35673994

RESUMEN

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forminas , Proteínas de Microfilamentos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Sci Adv ; 7(38): eabg6718, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533984

RESUMEN

Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane­associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.

10.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382996

RESUMEN

Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.


Asunto(s)
Membrana Celular/metabolismo , Schizosaccharomyces/metabolismo , Membrana Celular/ultraestructura , Fusión de Membrana , Microscopía Electrónica de Rastreo , Schizosaccharomyces/citología
11.
Mol Biol Cell ; 32(8): 703-711, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625871

RESUMEN

The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Tamaño de la Célula , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Fosforilación , Proteínas Quinasas/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
12.
PLoS Biol ; 19(1): e3001067, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406066

RESUMEN

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Asunto(s)
Ciclo Celular/fisiología , Factor de Apareamiento/fisiología , Meiosis/fisiología , Cigoto/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Proteínas Fúngicas/fisiología , Genes Fúngicos/fisiología , Factor de Apareamiento/genética , Factor de Apareamiento/metabolismo , Meiosis/genética , Organismos Modificados Genéticamente , Ploidias , Proteínas de Unión al ARN/fisiología , Recombinación Genética/fisiología , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
13.
Cells ; 9(9)2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932721

RESUMEN

The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.


Asunto(s)
Membrana Celular/metabolismo , Criptocromos/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/genética , Forma de la Célula/genética , Criptocromos/genética , Retroalimentación Fisiológica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Organismos Modificados Genéticamente , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/genética
14.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320462

RESUMEN

Sterols are crucial components of biological membranes, which are synthetized in the ER and accumulate in the plasma membrane (PM). Here, by applying a genetically encoded sterol biosensor (D4H), we visualize a sterol flow between PM and endosomes in the fission yeast Schizosaccharomyces pombe. Using time-lapse and correlative light-electron microscopy, we found that inhibition of Arp2/3-dependent F-actin assembly promotes the reversible relocalization of D4H from the PM to internal sterol-rich compartments (STRIC) labeled by synaptobrevin Syb1. Retrograde sterol internalization to STRIC is independent of endocytosis or an intact Golgi, but depends on Ltc1, a LAM/StARkin-family protein localized to ER-PM contact sites. The PM in ltc1Δ cells over-accumulates sterols and upon Arp2/3 inhibition forms extended ER-interacting invaginations, indicating that sterol transfer contributes to PM size homeostasis. Anterograde sterol movement from STRIC is independent of canonical vesicular trafficking but requires Arp2/3, suggesting a novel role for this complex. Thus, transfer routes orthogonal to vesicular trafficking govern the flow of sterols in the cell.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Antiportadores/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Schizosaccharomyces/metabolismo , Esteroles/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Antiportadores/genética , Técnicas Biosensibles , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Endocitosis/efectos de los fármacos , Endocitosis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endosomas/efectos de los fármacos , Endosomas/ultraestructura , Genes Reporteros , Aparato de Golgi/metabolismo , Microscopía Electrónica de Transmisión , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Proteínas R-SNARE/metabolismo
15.
Mol Biol Cell ; 31(9): 917-929, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32101481

RESUMEN

In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/enzimología , Schizosaccharomyces/fisiología
16.
PLoS Biol ; 18(1): e3000600, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978045

RESUMEN

Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.


Asunto(s)
Matriz Nuclear/fisiología , Schizosaccharomyces , Proteína de Unión al GTP cdc42/metabolismo , Proteínas ras/fisiología , Polaridad Celular/genética , Retroalimentación Fisiológica/fisiología , Optogenética , Organismos Modificados Genéticamente , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína de Unión al GTP cdc42/genética
17.
J Cell Sci ; 133(1)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31801797

RESUMEN

Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Vectores Genéticos/genética , Regiones Promotoras Genéticas/genética , Schizosaccharomyces/genética
18.
Curr Biol ; 29(19): 3165-3176.e6, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495586

RESUMEN

How actin structures of distinct identities and functions coexist within the same environment is a critical self-organization question. Fission yeast cells have a simple actin cytoskeleton made of four structures: Arp2/3 assembles actin patches around endocytic pits, and the formins For3, Cdc12, and Fus1 assemble actin cables, the cytokinetic ring during division, and the fusion focus during sexual reproduction, respectively. The focus concentrates the delivery of hydrolases by myosin V to digest the cell wall for cell fusion. We discovered that cells lacking capping protein (CP), a heterodimer that blocks barbed-end dynamics and associates with actin patches, exhibit a delay in fusion. Consistent with CP-formin competition for barbed-end binding, Fus1, F-actin, and the linear filament marker tropomyosin hyper-accumulate at the fusion focus in cells lacking CP. CP deletion also rescues the fusion defect of a mutation in the Fus1 knob region. However, myosin V and exocytic cargoes are reduced at the fusion focus and diverted to ectopic foci, which underlies the fusion defect. Remarkably, the ectopic foci coincide with Arp2/3-assembled actin patches, which now contain low levels of Fus1. We further show that CP localization to actin patches is required to prevent the formation of ectopic foci and promote efficient cell fusion. During mitotic growth, actin patches lacking CP similarly display a dual identity, as they accumulate the formins For3 and Cdc12, normally absent from patches, and are co-decorated by the linear filament-binding protein tropomyosin and the patch marker fimbrin. Thus, CP serves to protect Arp2/3-nucleated structures from formin activity.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/metabolismo , Forminas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Fusión Celular , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
J Cell Sci ; 132(11)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31152053

RESUMEN

In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.


Asunto(s)
Pared Celular/metabolismo , Quimiotaxis/fisiología , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/fisiología , Comunicación Celular , Fusión Celular , Polaridad Celular/fisiología , Factores Quimiotácticos/metabolismo , Feromonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...