Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 300(3): F749-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209009

RESUMEN

Alterations in the balance between ANG II/ACE and ANG 1-7/ACE2 in ANG II-dependent hypertension could reduce the generation of ANG 1-7 and contribute further to increased intrarenal ANG II. Upregulation of collecting duct (CD) renin may lead to increased ANG II formation during ANG II-dependent hypertension, thus contributing to this imbalance. We measured ANG I, ANG II, and ANG 1-7 contents, angiotensin-converting enzyme (ACE) and ACE2 gene expression, and renin activity in the renal cortex and medulla in the clipped kidneys (CK) and nonclipped kidneys (NCK) of 2K1C rats. After 3 wk of unilateral renal clipping, systolic blood pressure and plasma renin activity increased in 2K1C rats (n = 11) compared with sham rats (n = 9). Renal medullary angiotensin peptide levels were increased in 2K1C rats [ANG I: (CK = 171 ± 4; NCK = 251 ± 8 vs. sham = 55 ± 3 pg/g protein; P < 0.05); ANG II: (CK = 558 ± 79; NCK = 328 ± 18 vs. sham = 94 ± 7 pg/g protein; P < 0.001)]; and ANG 1-7 levels decreased (CK = 18 ± 2; NCK = 19 ± 2 pg/g vs. sham = 63 ± 10 pg/g; P < 0.001). In renal medullas of both kidneys of 2K1C rats, ACE mRNA levels and activity increased but ACE2 decreased. In further studies, we compared renal ACE and ACE2 mRNA levels and their activities from chronic ANG II-infused (n = 6) and sham-operated rats (n = 5). Although the ACE mRNA levels did not differ between ANG II rats and sham rats, the ANG II rats exhibited greater ACE activity and reduced ACE2 mRNA levels and activity. Renal medullary renin activity was similar in the CK and NCK of 2K1C rats but higher compared with sham. Thus, the differential regulation of ACE and ACE2 along with the upregulation of CD renin in both the CK and NCK in 2K1C hypertensive rats indicates that they are independent of perfusion pressure and contribute to the altered content of intrarenal ANG II and ANG 1-7.


Asunto(s)
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Hipertensión Renovascular/metabolismo , Túbulos Renales Colectores/metabolismo , Riñón/metabolismo , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Renina/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Corteza Renal/metabolismo , Médula Renal/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas
2.
Am J Physiol Renal Physiol ; 295(4): F904-11, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18632790

RESUMEN

Heme oxygenases (HO-1, HO-2) catalyze conversion of heme to iron, carbon monoxide (CO), and biliverdin/bilirubin. We studied the effects of renal HO-1 induction on afferent arteriole (Aff-Art) autoregulatory responses to increases in renal perfusion pressure (RPP). Rats were treated with hemin and SnCl2 to induce HO-1, and Aff-Art autoregulatory responses were evaluated using the rat blood-perfused juxtamedullary nephron preparation. Renal HO-1 expression was significantly increased in hemin- and SnCl2-treated rats, while HO-2 was not altered. Aff-Art autoregulatory constrictor responses to increases in RPP from 100 to 150 mmHg were attenuated in hemin- and SnCl2-treated rats compared with control rats (+1.1+/-3.3, n=9 and +4.4+/-5.3, n=9 vs. -14.2+/-1.5%, n=10, respectively) (P<0.05). Acute HO inhibition with chromium mesoporphyrin (CrMP; 15 micromol/l) restored Aff-Art autoregulatory responses in hemin- and SnCl2-treated rats. Superfusing Aff-Arts from control rats with 100 micromol/l biliverdin did not alter autoregulatory responses; however, superfusion with 1 mmol/l CO significantly attenuated autoregulatory responses to increases in RPP from 100 to 150 mmHg (+3.3+/-5.4 vs. -16.6+/-3.8%, n=6) (P<0.05). Acute soluble guanylate cyclase inhibition with 10 micromol/l ODQ restored Aff-Art autoregulatory responses in hemin-treated rats. Immunohistochemistry shows HO-2 to be expressed mainly in epithelial cells with weak staining in proximal tubules, interlobular arteries, and Aff-Arts. In hemin- and SnCl2-treated rats, HO-1 was induced in tubular epithelial cells but not interlobular arteries and Aff-Arts. We conclude that induction of renal HO-1 attenuates Aff-Art constrictor responses to increases in RPP via increasing CO production from tubular epithelial cells, suggesting that an augmented HO system in pathophysiological conditions modulates renal autoregulation.


Asunto(s)
Arteriolas/fisiología , Monóxido de Carbono/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Homeostasis/fisiología , Circulación Renal/fisiología , Animales , Arteriolas/efectos de los fármacos , Biliverdina/metabolismo , Presión Sanguínea/fisiología , Inhibidores Enzimáticos/farmacología , Guanilato Ciclasa/metabolismo , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemina/metabolismo , Hemina/farmacología , Homeostasis/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , Circulación Renal/efectos de los fármacos , Guanilil Ciclasa Soluble , Compuestos de Estaño/metabolismo , Compuestos de Estaño/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...