Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Workplace Health Saf ; 63(6): 267-75; quiz 276, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26135600

RESUMEN

Health care workers suffer from musculoskeletal disorders at a significantly higher rate than workers in other industries. Consequently, a growing demand for patient handling devices to reduce worker injury has evolved. This article reviews the literature regarding interventions designed to reduce injuries among health care workers. A PubMed search was conducted using the terms "occupational health [Mesh Terms] patient lifting." Fourteen articles were identified that assessed interventions to improve worker safety. Of the 14 articles, 7 discussed technological interventions, 4 educational approaches, and 3 policy change. All three types of interventions were generally effective at improving worker safety, with the ideal intervention consisting of elements of all three types. Although adopting a new intervention may be expensive, the reduction in workers' compensation costs associated with injured nurses can easily outweigh the costs of interventions.


Asunto(s)
Personal de Salud/estadística & datos numéricos , Movimiento y Levantamiento de Pacientes/métodos , Enfermedades Musculoesqueléticas/prevención & control , Salud Laboral/normas , Personal de Salud/educación , Humanos , Movimiento y Levantamiento de Pacientes/instrumentación , Enfermería/métodos , Traumatismos Ocupacionales/prevención & control
2.
J Phys Chem B ; 112(50): 16076-89, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19367836

RESUMEN

Recent discovery that single-stranded DNA (ssDNA) binds to carbon nanotubes with high affinity to form soluble hybrids has received great attention as a promising approach to solving the long-standing problem of nanotube solubilization and separation. The mechanism of this process, including the nature of the DNA-nanotube interactions and the molecular structure of the hybrids is still not well understood. Here, we use all-atom replica-exchange molecular dynamics simulations to study the association of several ssDNA decamers with single-walled carbon nanotubes of different chirality in an aqueous environment. The oligonucleotides are found to readily adsorb onto the nanotube surface, after which they undergo a slow structural rearrangement. Cluster analysis of bound DNA conformations as well as population distribution maps computed as a function of several local and global order parameters show that the hybrids exhibit a complex morphology with DNA strands assuming a number of distinct backbone geometries, which depend on both DNA sequence and nanotube diameter. In contrast, the nucleotide bases are found to align parallel to the nanotube surface with a high degree of orientational order. While the binding appears to be primarily driven by energetically favorable pi-stacking of DNA bases onto the nanotube surface, equilibrium distribution of hybrid conformations is modulated by a complex interplay of forces, including the DNA conformational strain and solvent interactions. As a result, the hybrid free-energy landscapes are found to be rugged, with multiple low-lying minima separated by high barriers, several of which are significantly populated at room temperature. Qualitative differences are observed in free energy profiles of purine- and pyrimidine-based oligonucleotide sequences and are attributed to the difference in self-stacking propensity of the bases.


Asunto(s)
ADN de Cadena Simple/química , Nanotubos de Carbono/química , Agua/química , Simulación por Computador , Estructura Molecular , Solventes , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...