RESUMEN
NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response when macrophages sense infection or tissue damage, which leads to caspase-1 activation, maturation and release of the inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune diseases. Several findings uncovered that NLRP3 inflammasome activity is under the regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether the centrosome composition or structure is altered during the inflammasome activation is not known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are reduced upon NLRP3 inflammasome activation via different activators in human and murine macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin, suggesting this is not a consequence of membrane rupture. We found that PCNT loss is dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and hypotonicity but not AIM2 activation. Our work reveals that the NLRP3 inflammasome activation alters centrosome composition highlighting the need to further understand the role of this organelle during inflammatory responses.
RESUMEN
Inflammation is a tightly coordinated response of the host immune system to bacterial and viral infections, triggered by the production of inflammatory cytokines. Sepsis is defined as a systemic inflammatory response followed by immunosuppression of the host and organ dysfunction. This imbalance of the immune response increases the risk of mortality of patients with sepsis, making it a major problem for critical care units worldwide. The P2X7 receptor plays a crucial role in activating the immune system by inducing the activation of peripheral blood mononuclear cells. In this study, we analyzed a cohort of abdominal origin septic patients and found that the expression of the P2X7 receptor in the plasma membrane is elevated in the different subsets of lymphocytes. We observed a direct relationship between the percentage of P2X7-expressing lymphocytes and the early inflammatory response in sepsis. Additionally, in patients whose lymphocytes presented a higher percentage of P2X7 surface expression, the total lymphocytes populations proportionally decreased. Furthermore, we found a correlation between elevated soluble P2X7 receptors in plasma and inflammasome-dependent cytokine IL-18. In summary, our work demonstrates that P2X7 expression is highly induced in lymphocytes during sepsis, and this correlates with IL-18, along with other inflammatory mediators such as IL-6, IL-8, and procalcitonin.
Asunto(s)
Interleucina-18 , Sepsis , Humanos , Citocinas/metabolismo , Interleucina-18/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismoRESUMEN
Bioluminescent resonance energy transfer (BRET) is a natural phenomenon resulting from a non-radiative energy transfer between a bioluminescent donor (Renilla luciferase) and a fluorescent protein acceptor. BRET signal is dependent on the distance and the orientation between the donor and the acceptor and could be used to study protein-protein interactions and conformational changes within proteins at real-time in living cells. This protocol describes the use of BRET technique to study NLRP3 oligomerization in living cells before and during NLRP3 inflammasome activation.
Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas , Transferencia de Energía , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Luciferasas de Renilla/genética , Mediciones Luminiscentes/métodosRESUMEN
Signaling through the inflammasome is important for the inflammatory response. Low concentrations of intracellular K+ are associated with the specific oligomerization and activation of the NLRP3 inflammasome, a type of inflammasome involved in sterile inflammation. After NLRP3 oligomerization, ASC protein binds and forms oligomeric filaments that culminate in large protein complexes named ASC specks. ASC specks are also initiated from different inflammasome scaffolds, such as AIM2, NLRC4, or Pyrin. ASC oligomers recruit caspase-1 and then induce its activation through interactions between their respective caspase activation and recruitment domains (CARD). So far, ASC oligomerization and caspase-1 activation are K+-independent processes. Here, we found that when there is low intracellular K+, ASC oligomers change their structure independently of NLRP3 and make the ASCCARD domain more accessible for the recruitment of the pro-caspase-1CARD domain. Therefore, conditions that decrease intracellular K+ not only drive NLRP3 responses but also enhance the recruitment of the pro-caspase-1 CARD domain into the ASC specks.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Caspasa 1 , Inflamasomas , Potasio , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Dominios ProteicosRESUMEN
Inflammation driven by the NLRP3 inflammasome is coordinated through multiple signaling pathways and is regulated by subcellular organelles. Here, we tested the hypothesis that NLRP3 senses disrupted endosome trafficking to trigger inflammasome formation and inflammatory cytokine secretion. NLRP3-activating stimuli disrupted endosome trafficking and triggered localization of NLRP3 to vesicles positive for endolysosomal markers and for the inositol lipid PI4P. Chemical disruption of endosome trafficking sensitized macrophages to the NLRP3 activator imiquimod, driving enhanced inflammasome activation and cytokine secretion. Together, these data suggest that NLRP3 can sense disruptions in the trafficking of endosomal cargoes, which may explain in part the spatial activation of the NLRP3 inflammasome. These data highlight mechanisms that could be exploited in the therapeutic targeting of NLRP3.
Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 1/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismoRESUMEN
Interleukin 1ß (IL-1ß) plays a major role in inflammation and is secreted by immune cells, such as macrophages, upon recognition of danger signals. Its secretion is regulated by the inflammasome, the assembly of which results in caspase 1 activation leading to gasdermin D (GSDMD) pore formation and IL-1ß release. During inflammation, danger signals also activate the complement cascade, resulting in the formation of the membrane attack complex (MAC). Here, we report that stimulation of LPS-primed human macrophages with sub-lytic levels of MAC results in activation of the NOD-like receptor 3 (NLRP3) inflammasome and GSDMD-mediated IL-1ß release. The MAC is first internalized into endosomes and then colocalizes with inflammasome components; adapter protein apoptosis associated speck-like protein containing a CARD (ASC) and NLRP3. Pharmacological inhibitors established that MAC-triggered activation of the NLRP3 inflammasome was dependent on MAC endocytosis. Internalization of the MAC also caused dispersion of the trans-Golgi network. Thus, these data uncover a role for the MAC in activating the inflammasome and triggering IL-1ß release in human macrophages.
Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/biosíntesis , Macrófagos/inmunología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Biomarcadores , Línea Celular , Células Cultivadas , Proteínas del Sistema Complemento/inmunología , Endocitosis , Endosomas/metabolismo , Humanos , Activación de Macrófagos/inmunología , Modelos Biológicos , Transporte de ProteínasRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2020.565924.].
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Interleukin (IL)-18 and IL-1ß are potent pro-inflammatory cytokines that contribute to inflammatory conditions such as rheumatoid arthritis and Alzheimer's disease. They are produced as inactive precursors that are activated by large macromolecular complexes called inflammasomes upon sensing damage or pathogenic signals. NLRP3 inflammasome activation is regarded to require a priming step that causes NLRP3 and IL-1ß gene upregulation, and also NLRP3 post-translational licencing. A subsequent activation step leads to the assembly of the complex and the cleavage of pro-IL-18 and pro-IL-1ß by caspase-1 into their mature forms, allowing their release. Here we show that human monocytes, but not monocyte derived macrophages, are able to form canonical NLRP3 inflammasomes in the absence of priming. NLRP3 activator nigericin caused the processing and release of constitutively expressed IL-18 in an unprimed setting. This was mediated by the canonical NLRP3 inflammasome that was dependent on K+ and Cl- efflux and led to ASC oligomerization, caspase-1 and Gasdermin-D (GSDMD) cleavage. IL-18 release was impaired by the NLRP3 inhibitor MCC950 and by the absence of NLRP3, but also by deficiency of GSDMD, suggesting that pyroptosis is the mechanism of release. This work highlights the readiness of the NLRP3 inflammasome to assemble in the absence of priming in human monocytes and hence contribute to the very early stages of the inflammatory response when IL-1ß has not yet been produced. It is important to consider the unprimed setting when researching the mechanisms of NLRP3 activation, as to not overshadow the pathways that occur in the absence of priming stimuli, which might only enhance this response.
Asunto(s)
Inflamasomas/metabolismo , Macrófagos/inmunología , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 1/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Macrófagos , Nigericina/farmacología , Proteínas de Unión a Fosfato/metabolismo , Multimerización de Proteína , Piroptosis , Transducción de Señal , Células THP-1RESUMEN
Sepsis is characterized by a systemic inflammatory response followed by immunosuppression of the host. Metabolic defects and mitochondrial failure are common in immunocompromised patients with sepsis. The NLRP3 inflammasome is important for establishing an inflammatory response after activation by the purinergic P2X7 receptor. Here, we study a cohort of individuals with intra-abdominal origin sepsis and show that patient monocytes have impaired NLRP3 activation by the P2X7 receptor. Furthermore, most sepsis-related deaths are among patients whose NLRP3 activation is profoundly altered. In monocytes from sepsis patients, the P2X7 receptor is associated with mitochondrial dysfunction. Furthermore, activation of the P2X7 receptor results in mitochondrial damage, which in turn inhibits NLRP3 activation by HIF-1α. We show that mortality increases in a mouse model of sepsis when the P2X7 receptor is activated in vivo. These data reveal a molecular mechanism initiated by the P2X7 receptor that contributes to NLRP3 impairment during infection.
Asunto(s)
Inflamasomas/inmunología , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sepsis/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/inmunología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/inmunología , Monocitos/citología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Receptores Purinérgicos P2X7/inmunología , Sepsis/sangre , Sepsis/microbiología , Sepsis/mortalidad , Regulación hacia Arriba/inmunologíaRESUMEN
Unconventional protein secretion represents an important process of the inflammatory response. The release of the pro-inflammatory cytokine interleukin (IL)-1ß which burst during pyroptosis as a consequence of gasdermin D plasma membrane pore formation, can also occur through other unconventional secretion pathways dependent on caspase-1 activation. However, how caspase-1 mediates cytokine release independently of gasdermin D remains poorly understood. Here we show that following caspase-1 activation by different inflammasomes, caspase-1 cleaves early endosome autoantigen 1 (EEA1) protein at Asp127/132. Caspase-1 activation also results in the release of the endosomal EEA1 protein in a gasdermin D-independent manner. EEA1 knock-down results in adecreased release of caspase-1 and IL-1ß, but the pyroptotic release of other inflammasome components and lactate dehydrogenase was not affected. This study shows how caspase-1 control the release of EEA1 and IL-1ß in a pyroptotic-independent manner.
Asunto(s)
Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Endosomas/metabolismo , Células HEK293 , Humanos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Piroptosis , Proteínas de Transporte Vesicular/genéticaRESUMEN
The NLRP3 inflammasome is an important regulator of inflammation and immunity. It is a multimolecular platform formed within cells that facilitates the activation of proinflammatory caspases to drive secretion of cytokines such as interleukin-1ß (IL-1ß). Knowledge of the mechanisms regulating formation of the NLRP3 inflammasome is incomplete. Here we report Cl- channel-dependent formation of dynamic ASC oligomers and inflammasome specks that remain inactive in the absence of K+ efflux. Formed after Cl- efflux exclusively, ASC specks are NLRP3 dependent, reversible, and inactive, although they further prime inflammatory responses, accelerating and enhancing release of IL-1ß in response to a K+ efflux-inducing stimulus. NEK7 is a specific K+ sensor and does not associate with NLRP3 under conditions stimulating exclusively Cl- efflux, but does after K+ efflux, activating the complex driving inflammation. Our investigation delivers mechanistic understanding into inflammasome activation and the regulation of inflammatory responses.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Cloruros/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Multimerización de Proteína , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Femenino , Inflamasomas/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Transporte Iónico/genética , Masculino , Ratones , Ratones Noqueados , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Potasio/metabolismoRESUMEN
The assembly and activation of the inflammasomes are tightly regulated by post-translational modifications, including ubiquitin. Deubiquitinases (DUBs) counteract the addition of ubiquitin and are essential regulators of immune signalling pathways, including those acting on the inflammasome. How DUBs control the assembly and activation of inflammasomes is unclear. Here, we show that the DUBs USP7 and USP47 regulate inflammasome activation in macrophages. Chemical inhibition of USP7 and USP47 blocks inflammasome formation, independently of transcription, by preventing ASC oligomerisation and speck formation. We also provide evidence that the ubiquitination status of NLRP3 itself is altered by inhibition of USP7 and USP47. Interestingly, we found that the activity of USP7 and USP47 increased in response to inflammasome activators. Using CRISPR/Cas9 in the macrophage cell line THP-1, we show that inflammasome activation is reduced when both USP7 and USP47 are knocked down. Altogether, these data reveal a new post-transcriptional role for USP47 and USP7 in inflammation by regulating inflammasome activation and the release of the pro-inflammatory cytokines IL-1ß and IL-18, and implicate dual USP7 and USP47 inhibitors as potential therapeutic agents for inflammatory disease.
Asunto(s)
Inflamación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7/genética , Sistemas CRISPR-Cas/genética , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Técnicas de Silenciamiento del Gen , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/patología , Interleucina-18/genética , Interleucina-1beta/genética , Macrófagos/metabolismo , Transducción de Señal/genética , Proteasas Ubiquitina-Específicas , Ubiquitinación/genéticaRESUMEN
The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K+ concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K+ concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1ß release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.
Asunto(s)
Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Meliteno/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasas/metabolismo , Caspasas Iniciadoras , Diferenciación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis/efectos de los fármacos , Células THP-1RESUMEN
Inflammasomes are cytosolic molecular platforms that alert the immune system about the presence of infection. Here we report that zebrafish guanylate-binding protein 4 (Gbp4), an IFNγ-inducible GTPase protein harbouring a C-terminal CARD domain, is required for the inflammasome-dependent clearance of Salmonella Typhimurium (ST) by neutrophils in vivo. Despite the presence of the CARD domain, Gbp4 requires the universal inflammasome adaptor Asc for mediating its antibacterial function. In addition, the GTPase activity of Gbp4 is indispensable for inflammasome activation and ST clearance. Mechanistically, neutrophils are recruited to the infection site through the inflammasome-independent production of the chemokine (CXC motif) ligand 8 and leukotriene B4, and then mediate bacterial clearance through the Gbp4 inflammasome-dependent biosynthesis of prostaglandin D2. Our results point to GBPs as key inflammasome adaptors required for prostaglandin biosynthesis and bacterial clearance by neutrophils and suggest that transient activation of the inflammasome may be used to treat bacterial infections.
Asunto(s)
Proteínas de Unión al GTP/inmunología , Inflamasomas/inmunología , Neutrófilos/inmunología , Prostaglandina D2/biosíntesis , Animales , Dominio de Reclutamiento y Activación de Caspasas , Interleucina-8/inmunología , Leucotrieno B4/inmunología , Morfolinos , Organismos Modificados Genéticamente , Prostaglandinas/inmunología , Salmonella typhimurium , Pez CebraRESUMEN
Bioluminescent resonance energy transfer (BRET) is a natural phenomenon resulting from a non-radiative energy transfer between a bioluminescent donor (Renilla luciferase) and a fluorescent protein acceptor. BRET signal is dependent on the distance and the orientation between the donor and the acceptor and could be used to study protein-protein interactions and conformational changes within proteins in real time in living cells. This protocol describes the use of BRET technique to study NLRP3 oligomerization in living cells before and during NLRP3 inflammasome activation.
Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Proteína con Dominio Pirina 3 de la Familia NLR/química , Células HEK293 , Humanos , Inflamasomas/química , Unión Proteica , Multimerización de ProteínaRESUMEN
The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R.
Asunto(s)
Anexina A1/inmunología , Caspasa 1/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Receptores Purinérgicos P2X7/inmunología , Animales , Anexina A1/genética , Caspasa 1/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Receptores Purinérgicos P2X7/genéticaRESUMEN
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is a key adaptor molecule required for the inflammatory processes. ASC acts by bridging NLRP proteins, such as NLRP3, with procaspase-1 within the inflammasome complex, which subsequently results in the activation of caspase-1 and the secretion of IL-1ß and IL-18. In response to bacterial infection, ASC also forms specks by self-oligomerization to activate caspase-1 and induce pyroptosis. Hitherto, the role of these specks in NLRP3 inflammasome activation in response to danger signals, such as a hypotonic environment, largely has been unexplored. In this article, we report that, under hypotonic conditions and independently of NLRP3, ASC was able to form specks that did not activate caspase-1. These specks were not associated with pyroptosis and were controlled by transient receptor potential vanilloid 2 channel-mediated signaling. However, interaction with NLRP3 enhanced ASC speck formation, leading to fully functional inflammasomes and caspase-1 activation. This study reveals that the ASC speck can present different oligomerization assemblies and represents an essential step in the activation of functional NLRP3 inflammasomes.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Macrófagos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Adaptadoras de Señalización CARD , Canales de Calcio/metabolismo , Línea Celular , Activación Enzimática , Humanos , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transducción de Señal , Canales Catiónicos TRPV/metabolismoRESUMEN
NLRP3 inflammasome is a multiprotein complex responsible for the activation of inflammatory caspase-1, resulting in processing and release of pro-inflammatory cytoquines IL-1ß and IL-18 (Schroder and Tschopp, 2010). This inflammasome is composed of the sensor protein NLRP3 connected to caspase-1 through the adaptor protein ASC (apoptosis-associated speck-like protein with a caspase-recruitment domain) (Schroder and Tschopp, 2010). We and others have reported that upon inflammasome activation functional oligomeric inflammasome particles of NLRP3 and ASC were released from cells, acting as danger signals to amplify inflammation by promoting the activation of caspase-1 extracellularly (Baroja-Mazo et al., 2014; Franklin et al., 2014). Studying the extracellular function of oligomeric ASC and NLRP3 inflammasome particles was possible by purification of recombinant particles of ASC or the constitutively activated NLRP3 mutant associated with cryopyrin-associated periodic syndromes (CAPS, mutation p.D303N), both tagged with the yellow fluorescent protein (YFP) and expressed in HEK293 cells. The purification process was facilitated by the fact that expression of recombinant ASC or mutant NLRP3 in HEK293 cells resulted in their spontaneous aggregation into specks (Baroja-Mazo et al., 2014) and the protocol was originally adapted from Fernandes-Alnemri and Alnemri (2008).
RESUMEN
Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1ß and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.