Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 23(5): 1634-1648, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38572994

RESUMEN

The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.


Asunto(s)
Candida , Candidiasis , Inmunoglobulina G , Animales , Ratones , Candida/inmunología , Candida/patogenicidad , Humanos , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/sangre , Inmunoglobulina G/sangre , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/sangre , Proteómica/métodos , Candida albicans/inmunología , Candida albicans/patogenicidad , Proteínas Fúngicas/inmunología , Fosfoglicerato Mutasa/inmunología , Fosfoglicerato Quinasa/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasas/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Anticuerpos Antifúngicos/sangre , Anticuerpos Antifúngicos/inmunología , Femenino , Virulencia
2.
Microbes Infect ; 26(4): 105305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296157

RESUMEN

The liver, and more specifically, the liver sinusoidal endothelial cells, constitute the beginning of one of the most important responses for the elimination of hematogenously disseminated Candida albicans. Therefore, we aimed to study the mechanisms involved in the interaction between these cells and C. albicans. Transcriptomics-based analysis showed an increase in the expression of genes related to the immune response (including receptors, cytokines, and adhesion molecules), as well as to aerobic glycolysis. Further in vitro analyses showed that IL-6 production in response to C. albicans is controlled by MyD88- and SYK-pathways, suggesting an involvement of Toll-like and C-type lectin receptors and the subsequent activation of the MAP-kinases and c-Fos/AP-1 transcription factor. In addition, liver sinusoidal endothelial cells undergo metabolic reprogramming towards aerobic glycolysis induced by C. albicans, as confirmed by the increased Extracellular Acidification Rate and the overexpression of enolase (Eno2), hexonikase (Hk2) and glucose transporter 1 (Slc2a1). In conclusion, these results indicate that the hepatic endothelium responds to C. albicans by increasing aerobic glycolysis and promoting an inflammatory environment.


Asunto(s)
Candida albicans , Células Endoteliales , Glucólisis , Hígado , Candida albicans/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Animales , Hígado/metabolismo , Hígado/microbiología , Quinasa Syk/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Inflamación/metabolismo , Perfilación de la Expresión Génica , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo
3.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37286896

RESUMEN

The most common genetic hereditary disease affecting Caucasians is cystic fibrosis (CF), which is caused by autosomal recessive mutations in the CFTR gene. The most serious consequence is the production of a thick and sticky mucus in the respiratory tract, which entraps airborne microorganisms and facilitates colonization, inflammation and infection. Therefore, the present article compiles the information about the microbiota and, particularly, the inter-kingdom fungal-bacterial interactions in the CF lung, the molecules involved and the potential effects that these interactions may have on the course of the disease. Among the bacterial compounds, quorum sensing-regulated molecules such as homoserine lactones, phenazines, rhamnolipids, quinolones and siderophores (pyoverdine and pyochelin) stand out, but volatile organic compounds, maltophilin and CF-related bacteriophages are also explained. These molecules exhibit diverse antifungal mechanisms, including iron starvation and induction of reactive oxygen and nitrogen species production. The fungal compounds are less studied, but they include cell wall components, siderophores, patulin and farnesol. Despite the apparent competition between microorganisms, the persistence of significant rates of bacterial-fungal co-colonization in CF suggests that numerous variables influence it. In conclusion, it is crucial to increase scientific and economic efforts to intensify studies on the bacterial-fungal inter-kingdom interactions in the CF lung.


Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Sideróforos , Bacterias , Pulmón/microbiología
4.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986993

RESUMEN

Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.

5.
J Fungi (Basel) ; 9(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36836272

RESUMEN

The detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF.

6.
J Appl Microbiol ; 133(6): 3534-3545, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35988051

RESUMEN

INTRODUCTION: Quantitative reverse transcription PCR (RT-qPCR) is the leading tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given that it will almost certainly continue to coexist with other respiratory viruses in the coming years, our study aimed to design a multiplex PCR system not affected by supplier outages and with reduced cost compared to the existing commercially available kits. METHODS AND RESULTS: In this study, combinations of four primers/probe sets were used to construct a flexible RT-qPCR assay which is capable of discriminating between SARS-CoV-2 and the seasonal human coronavirus HCoV-OC43, or even influenza A virus. Additionally, the human RPP30 gene was used as an internal control. To demonstrate the robustness of the assay, it was applied to a collection of 150 clinical samples. The results showed 100% sensitivity and specificity compared to the automatized system used at the hospital and were better when indeterminate samples were analysed. CONCLUSIONS: This study provides an efficient method for the simultaneous detection of SARS-CoV-2, HCoV-OC43 and influenza A virus, and its efficacy has been tested on clinical samples showing outstanding results. SIGNIFICANCE AND IMPACT OF THE STUDY: The multiplex RT-qPCR design offers an accessible and economical alternative to commercial detection kits for hospitals and laboratories with limited economic resources or facing situations of supply shortage.


Asunto(s)
COVID-19 , Virus de la Influenza A , Humanos , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Virus de la Influenza A/genética , COVID-19/diagnóstico , Sensibilidad y Especificidad , Nasofaringe
7.
J Fungi (Basel) ; 7(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499053

RESUMEN

Infections caused by the opportunistic pathogens Scedosporium/Lomentospora are on the rise. This causes problems in the clinic due to the difficulty in diagnosing and treating them. This review collates information published on immune response against these fungi, since an understanding of the mechanisms involved is of great interest in developing more effective strategies against them. Scedosporium/Lomentospora cell wall components, including peptidorhamnomannans (PRMs), α-glucans and glucosylceramides, are important immune response activators following their recognition by TLR2, TLR4 and Dectin-1 and through receptors that are yet unknown. After recognition, cytokine synthesis and antifungal activity of different phagocytes and epithelial cells is species-specific, highlighting the poor response by microglial cells against L. prolificans. Moreover, a great number of Scedosporium/Lomentospora antigens have been identified, most notably catalase, PRM and Hsp70 for their potential medical applicability. Against host immune response, these fungi contain evasion mechanisms, inducing host non-protective response, masking fungal molecular patterns, destructing host defense proteins and decreasing oxidative killing. In conclusion, although many advances have been made, many aspects remain to be elucidated and more research is necessary to shed light on the immune response to Scedosporium/Lomentospora.

8.
Front Cell Infect Microbiol ; 10: 602089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324582

RESUMEN

The detection and diagnosis of the opportunistic fungi Scedosporium spp. and Lomentospora prolificans still relies mainly on low-sensitive culture-based methods. This fact is especially worrying in Cystic Fibrosis (CF) patients in whom these fungal species are frequently isolated and may increase the risk of suffering from an infection or other health problems. Therefore, with the purpose of developing a serologic detection method for Scedosporium/Lomentospora, four different Scedosporium boydii protein extracts (whole cell protein extract, secretome, total cell surface and conidial surface associated proteins) were studied by ELISA to select the most useful for IgG detection in sera from CF patients. The four extracts were able to discriminate the Scedosporium/Lomentospora-infected from Aspergillus-infected and non-infected patients. However, the whole cell protein extract was the one selected, as it was the one with the highest output in terms of protein concentration per ml of fungal culture used, and its discriminatory capacity was the best. The ELISA test developed was then assayed with 212 sera from CF patients and it showed to be able to detect Scedosporium spp. and Lomentospora prolificans with very high sensitivity and specificity, 86%-100% and 93%-99%, respectively, depending on the cut-off value chosen (four values were proposed A450nm= 0.5837, A450nm= 0.6042, A450nm= 0.6404, and A450nm= 0.7099). Thus, although more research is needed to reach a standardized method, this ELISA platform offers a rapid, low-cost and easy solution to detect these elusive fungi through minimally invasive sampling, allowing the monitoring of the humoral response to fungal presence.


Asunto(s)
Ascomicetos , Fibrosis Quística , Scedosporium , Antifúngicos , Fibrosis Quística/complicaciones , Ensayo de Inmunoadsorción Enzimática , Humanos
9.
Rev Iberoam Micol ; 37(3-4): 81-86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33168341

RESUMEN

BACKGROUND: Mucor circinelloides is an opportunistic fungus capable of causing mucormycosis, a highly aggressive infection of quick spreading. Besides, it also has a high mortality rate due to late diagnosis and difficult treatment. AIMS: In this study we have identified the most immunoreactive proteins of the secretome and the total protein extract of M. circinelloides using sera from immunocompromised infected mice. METHODS: The proteins of the secretome and the total extract were analyzed by two-dimensional electrophoresis and the most immunoreactive antigens were detected by Western Blot, facing the sera of immunocompromised infected mice to the proteins obtained in both extracts of M. circinelloides. RESULTS: Seven antigens were detected in the secretome extract, and two in the total extract, all of them corresponding only to three proteins. The enzyme enolase was detected in both extracts, while triosephosphate isomerase was detected in the secretome, and heat shock protein HSS1 in the total extract. CONCLUSIONS: In this work the most immunoreactive antigens of the secretome and the total extract of M. circinelloides were identified. The identified proteins are well known fungal antigens and, therefore, these findings can be useful for future research into alternatives for the diagnosis and treatment of mucormycosis.


Asunto(s)
Mucor , Mucormicosis , Animales , Ratones , Mucormicosis/diagnóstico , Oxidación-Reducción
10.
Sci Rep ; 10(1): 9206, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514067

RESUMEN

Candida albicans is a commensal yeast able to cause life threatening invasive infections particularly in immunocompromised patients. Despite the availability of antifungal treatments, mortality rates are still unacceptably high and drug resistance is increasing. We, therefore, generated the Ca37 monoclonal antibody against the C. albicans alcohol dehydrogenase (Adh) 1. Our data showed that Ca37 was able to detect C. albicans cells, and it bound to Adh1 in yeast and Adh2 in hyphae among the cell wall-associated proteins. Moreover, Ca37 was able to inhibit candidal growth following 18 h incubation time and reduced the minimal inhibitory concentration of amphotericin B or fluconazole when used in combination with those antifungals. In addition, the antibody prolonged the survival of C. albicans infected-Galleria mellonella larvae, when C. albicans was exposed to antibody prior to inoculating G. mellonella or by direct application as a therapeutic agent on infected larvae. In conclusion, the Ca37 monoclonal antibody proved to be effective against C. albicans, both in vitro and in vivo, and to act together with antifungal drugs, suggesting Adh proteins could be interesting therapeutic targets against this pathogen.


Asunto(s)
Alcohol Deshidrogenasa/inmunología , Anticuerpos Monoclonales/farmacología , Candida albicans/enzimología , Proteínas Fúngicas/inmunología , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Anfotericina B/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Candidiasis/veterinaria , Fluconazol/farmacología , Hifa/enzimología , Larva/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Virulencia
11.
Vaccines (Basel) ; 7(4)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835471

RESUMEN

The high mortality rates of Lomentospora prolificans infections are due, above all, to the tendency of the fungus to infect weakened hosts, late diagnosis and a lack of effective therapeutic treatments. To identify proteins of significance for diagnosis, therapy or prophylaxis, immunoproteomics-based studies are especially important. Consequently, in this study murine disseminated infections were carried out using L. prolificans, Scedosporium aurantiacum, Scedosporium boydii and Aspergillus fumigatus, and their sera used to identify the most immunoreactive proteins of L. prolificans total extract and secreted proteins. The results showed that L. prolificans was the most virulent species and its infections were characterized by a high fungal load in several organs, including the brain. The proteomics study showed a high cross-reactivity between Scedosporium/Lomentospora species, but not with A. fumigatus. Among the antigens identified were, proteasomal ubiquitin receptor, carboxypeptidase, Vps28, HAD-like hydrolase, GH16, cerato-platanin and a protein of unknown function that showed no or low homology with humans. Finally, Hsp70 deserves a special mention as it was the main antigen recognized by Scedosporium/Lomentospora species in both secretome and total extract. In conclusion, this study identifies antigens of L. prolificans that can be considered as potential candidates for use in diagnosis and as therapeutic targets and the production of vaccines.

12.
Int J Antimicrob Agents ; 51(1): 10-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28669833

RESUMEN

The number of fungal isolates resistant to antifungal drugs has increased dramatically over the last few years and has become an important concern for clinicians. Among these isolates, fungi showing multidrug resistance are particularly worrying because of the difficulties associated with their treatment. These factors hamper the successful recovery of patients and drastically raise mortality rates. Antifungal resistance is multifactorial and several mechanisms in different fungi have been described. There is a need to study these mechanisms in depth; however, the study of antifungal drug resistance separately for each individual species makes progress in the field very slow and tedious. The selection of a multiresistant microorganism as a model for understanding resistance mechanisms and extrapolating the results to other species could help in the search for a solution. In this mini-review, we describe the pathobiology of Lomentospora (Scedosporium) prolificans, paying special attention to its intrinsic resistance to all currently available antifungal agents. The characteristics of L. prolificans offer several advantages: the possibility of using a single microorganism for the study of resistance to different drugs, even cases of double and triple resistance; it is biologically safe for society in general as no new genetically-modified strains are needed for the experiments; it is homologous with other fungal species, and there is repetitiveness between different strains. In conclusion, we propose L. prolificans as a candidate for consideration as a fungal model for the study of resistance mechanisms against antifungal agents.


Asunto(s)
Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica Múltiple/genética , Micosis/tratamiento farmacológico , Scedosporium/efectos de los fármacos , Scedosporium/genética , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Micosis/microbiología , Scedosporium/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...