Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
PLoS One ; 18(5): e0285087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37130105

RESUMEN

OBJECTIVES: Plasma leakage, a hallmark of disease in Dengue virus (DENV) infection, is an important clinical manifestation and is often associated with numerous factors such as viral factors. The aim of this study is to investigate the association of virus serotype, viral load kinetics, history of infection, and NS1 protein with plasma leakage. METHODS: Subjects with fever ≤ 48 hours and positive DENV infection were included. Serial laboratory tests, viral load measurements, and ultrasonography examination to assess plasma leakage were performed. RESULTS: DENV-3 was the most common serotype found in the plasma leakage group (35%). Patients with plasma leakage demonstrated a trend of higher viral load and a longer duration of viremia compared to those without. This was significantly observed on the fourth day of fever (p = 0.037). We found higher viral loads on specific days in patients with plasma leakage in both primary and secondary infections compared to those without. In addition, we also observed more rapid viral clearance in patients with secondary infection. NS1 protein, especially after 4 days of fever, was associated with higher peak viral load level, even though it was not statistically significant (p = 0.470). However, pairwise comparison demonstrated that peak viral load level in the group of patients with circulating NS1 detected for 7 days was significantly higher than the 5-day group (p = 0.037). CONCLUSION: DENV-3 was the most common serotype to cause plasma leakage. Patients with plasma leakage showed a trend of higher viral load and a longer duration of viremia. Higher level of viral load was observed significantly on day 5 in patients with primary infection and more rapid viral clearance was observed in patients with secondary infection. Longer duration of circulating NS1 protein was also seen to be positively correlated with higher peak viral load level although not statistically significant.


Asunto(s)
Coinfección , Virus del Dengue , Dengue , Humanos , Viremia , Indonesia , Proteínas no Estructurales Virales/metabolismo , Anticuerpos Antivirales
2.
Front Immunol ; 14: 1114396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845100

RESUMEN

Introduction: SARS-CoV-2 has developed a number of Variants of Concern (VOC) with increased infectivity and/or reduced recognition by neutralizing antibodies specific for the receptor binding domain (RBD) of the spike protein. Extended studies of other viruses have shown that strong and broad viral escape from neutralizing serum antibodies is typically associated with the formation of serotypes. Methods: To address the question of serotype formation for SARS-CoV-2 in detail, we generated recombinant RBDs of VOCs and displayed them on virus-like particles (VLPs) for vaccination and specific antibody responses. Results: As expected, mice immunized with wild type (wt) RBD generated antibodies that recognized wt RBD well but displayed reduced binding to VOC RBDs, in particular those with the E484K mutation. Unexpectedly, however, antibodies induced by the VOC vaccines typically recognized best the wt RBDs, often more than the homologous VOC RBDs used for immunization. Hence, these data do not reveal different serotypes but represent a newly observed viral evolution, suggesting a unique situation where inherent differences of RBDs are responsible for induction of neutralizing antibodies. Discussion: Therefore, besides antibody (fine) specificity, other qualities of antibodies (e.g. their affinity) determine neutralizing capability. Immune escape of SARS-CoV-2 VOCs only affects a fraction of an individual's serum antibodies. Consequently, many neutralizing serum antibodies are cross-reactive and thus protective against multiple current and future VOCs. Besides considering variant sequences for next generation vaccines, broader protection will be achieved with vaccines that induce elevated titers of high-quality antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunación , Inmunización , Anticuerpos Neutralizantes
3.
J Biomol Struct Dyn ; 41(7): 3052-3061, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35220926

RESUMEN

The rapid geographic expansion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent of Coronavirus Disease 2019 (COVID-19) pandemic, poses an immediate need for potent drugs. Enveloped viruses infect the host cell by cellular membrane fusion, a crucial mechanism required for virus replication. The SARS-CoV-2 spike glycoprotein, due to its primary interaction with the human angiotensin-converting enzyme 2 (ACE2) cell-surface receptor, is considered a potential target for drug development. In this study, around 5,800 molecules were virtually screened using molecular docking. Five molecules were selected for in vitro experiments from those that reported docking scores lower than -6 kcal/mol. Imatinib, a Bcr-Abl tyrosine kinase inhibitor, showed maximum antiviral activity in Vero cells. We further investigated the interaction of imatinib, a compound under clinical trials for the treatment of COVID-19, with SARS-CoV-2 RBD, using in silico methods. Molecular dynamics simulations verified that imatinib interacts with RBD residues that are critical for ACE2 binding. This study also provides significant molecular insights on potential repurposable small-molecule drugs and chemical scaffolds for the development of novel drugs targeting the SARS-CoV-2 spike RBD.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , Humanos , Simulación del Acoplamiento Molecular , Enzima Convertidora de Angiotensina 2 , Mesilato de Imatinib , Células Vero
4.
Emerg Infect Dis ; 28(12): 2416-2424, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36288572

RESUMEN

Tick-borne encephalitis virus (TBEV) is an emerging pathogen that was first detected in ticks and humans in the Netherlands in 2015 (ticks) and 2016 (humans). To learn more about its distribution and prevalence in the Netherlands, we conducted large-scale surveillance in ticks and rodents during August 2018-September 2020. We tested 320 wild rodents and >46,000 ticks from 48 locations considered to be at high risk for TBEV circulation. We found TBEV RNA in 3 rodents (0.9%) and 7 tick pools (minimum infection rate 0.02%) from 5 geographically distinct foci. Phylogenetic analyses indicated that 3 different variants of the TBEV-Eu subtype circulate in the Netherlands, suggesting multiple independent introductions. Combined with recent human cases outside known TBEV hotspots, our data demonstrate that the distribution of TBEV in the Netherlands is more widespread than previously thought.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Países Bajos/epidemiología , Encefalitis Transmitida por Garrapatas/epidemiología , Filogenia
5.
Front Immunol ; 13: 864718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784292

RESUMEN

mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , ARN Mensajero/genética , SARS-CoV-2/genética
6.
Molecules ; 27(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630694

RESUMEN

Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0-2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.


Asunto(s)
Antivirales , Virus del Dengue , Furina , Inhibidores de Proteasas , Replicación Viral , Antivirales/farmacología , Dengue/tratamiento farmacológico , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Furina/antagonistas & inhibidores , Humanos , Péptido Hidrolasas , Péptidos/farmacología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
7.
Vaccines (Basel) ; 10(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35632499

RESUMEN

In this report, we mechanistically reveal how the Variant of Concern (VOC) SARS-CoV-2 Omicron (B.1.1.529) escapes neutralizing antibody responses, by physio-chemical characterization of this variant in comparison to the wild-type Wuhan and the Delta variant (B.1.617.2). Convalescent sera, as well as sera obtained from participants who received two or three doses of mRNA vaccines (Moderna-mRNA-1273® or Pfizer-BNT162b2®), were used for comparison in this study. Our data demonstrate that both Delta, as well as Omicron variants, exhibit a higher affinity for the receptor ACE2, facilitating infection and causing antibody escape by receptor affinity (affinity escape), due to the reduced ability of antibodies to compete with RBD-receptor interaction and virus neutralization. In contrast, only Omicron but not the Delta variant escaped antibody recognition, most likely because only Omicron exhibits the mutation at E484A, a position associated with reduced recognition, resulting in further reduced neutralization (specificity escape). Nevertheless, the immunizations with RNA-based vaccines resulted in marked viral neutralization in vitro for all strains, compatible with the fact that Omicron is still largely susceptible to vaccination-induced antibodies, despite affinity- and specificity escape.

8.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214764

RESUMEN

The impact of the COVID-19 pandemic has been reduced since the application of vaccination programs, mostly shown in the reduction of hospitalized patients. However, the emerging variants, in particular Omicron, have caused a steep increase in the number of infections; this increase is, nevertheless, not matched by an increase in hospitalization. Therefore, a vaccine that induces cross-reactive antibodies against most or all variants is a potential solution for the issue of emerging new variants. Here, we present a vaccine candidate which displays receptor-binding domain (RBD) of SARS-CoV-2 on virus-like particles (VLP) that, in mice, not only induce strong antibody responses against RBD but also bind RBDs from other variants of concern (VOCs). The antibodies induced by wild-type (wt) RBD displayed on immunologically optimized Cucumber mosaic virus incorporated tetanus toxin (CuMVTT) VLPs bind to wt as well as RBDs of VOCs with high avidities, indicating induction of strongly cross-reactive IgG antibodies. Interestingly, similar cross-reactive IgA antibodies were induced in immunized mice. Furthermore, these cross-reactive antibodies demonstrated efficacy in neutralizing wt (Wuhan) as well as SARS-CoV-2 VOCs (Beta, Delta, and Gamma). In summary, RBDs displayed on VLPs are capable of inducing protective cross-reactive IgG and IgA antibodies in mice, indicating that it may be possible to cover emerging VOCs with a single vaccine based on wt RBD.

9.
Allergy ; 77(1): 243-257, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496033

RESUMEN

BACKGROUND: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS: Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS: Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION: Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Vacunas contra la COVID-19 , Control de Enfermedades Transmisibles , Humanos , Ratones , Conejos , SARS-CoV-2
10.
Emerg Infect Dis ; 27(12): 3115-3118, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695368

RESUMEN

We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.3% using a receptor-binding domain ELISA, demonstrating probable human-to-cat transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , Gatos , Europa (Continente)/epidemiología , Humanos , Estudios Seroepidemiológicos
11.
NPJ Vaccines ; 6(1): 107, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429427

RESUMEN

MERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV). In order to produce a vaccine that is readily scalable, we genetically fused the receptor-binding motif (RBM) of MERS-CoV spike protein into the surface of cucumber-mosaic virus VLPs. The employed CuMVTT-VLPs represent a new immunologically optimized vaccine platform incorporating a universal T cell epitope derived from tetanus toxin (TT). The resultant vaccine candidate (mCuMVTT-MERS) is a mosaic particle and consists of unmodified wild type monomers and genetically modified monomers displaying RBM, co-assembling within E. coli upon expression. mCuMVTT-MERS vaccine is self-adjuvanted with ssRNA, a TLR7/8 ligand which is spontaneously packaged during the bacterial expression process. The developed vaccine candidate induced high anti-RBD and anti-spike antibodies in a murine model, showing high binding avidity and an ability to completely neutralize MERS-CoV/EMC/2012 isolate, demonstrating the protective potential of the vaccine candidate for dromedaries and humans.

12.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923573

RESUMEN

The ongoing coronavirus disease (COVID-19) pandemic is caused by a new coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) first reported in Wuhan City, China. From there, it has been rapidly spreading to many cities inside and outside China. Nowadays, more than 110 million cases with deaths surpassing 2 million have been recorded worldwide, thus representing a major health and economic issues. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here, we demonstrated that the recombinantly expressed receptor-binding domain (RBD) of the spike protein can be coupled to immunologically optimized virus-like particles derived from cucumber mosaic virus (CuMVTT). The RBD displayed CuMVTT bound to ACE2, the viral receptor, demonstrating proper folding of RBD. Furthermore, a highly repetitive display of the RBD on CuMVTT resulted in a vaccine candidate that induced high levels of specific antibodies in mice, which were able to block binding of the spike protein to ACE2 and potently neutralize SARS-CoV-2 virus in vitro.

13.
Front Immunol ; 12: 622516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679766

RESUMEN

Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Macrófagos/inmunología , Virus de la Rabia/fisiología , Rabia/inmunología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Antiinflamatorios , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular , Células Cultivadas , Colinérgicos , Técnicas de Cocultivo , Humanos , Interleucina-10/metabolismo , Activación de Linfocitos , FN-kappa B/metabolismo , Neuroinmunomodulación , Unión Proteica , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Células Th2/inmunología
14.
Nano Today ; 35: 100961, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32904707

RESUMEN

With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.

15.
Trop Med Infect Dis ; 5(2)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370128

RESUMEN

Analysis of the temporal, seasonal and demographic distribution of dengue virus (DENV) infections in Barbados was conducted using national surveillance data from a total of 3994 confirmed dengue cases. Diagnosis was confirmed either by DENV-specific real time reverse transcriptase polymerase chain reaction (rRT-PCR), or non-structural protein 1 (NS1) antigen or enzyme linked immunosorbent assay (ELISA) tests; a case fatality rate of 0.4% (10/3994) was observed. The prevalence rate of dengue fever (DF) varied from 27.5 to 453.9 cases per 100,000 population among febrile patients who sought medical attention annually. DF cases occurred throughout the year with low level of transmission observed during the dry season (December to June), then increased transmission during rainy season (July to November) peaking in October. Three major dengue epidemics occurred in Barbados during 2010, 2013 and possibly 2016 with an emerging three-year interval. DF prevalence rate among febrile patients who sought medical attention overall was highest among the 10-19 years old age group. The highest DF hospitalisation prevalence rate was observed in 2013. Multiple serotypes circulated during the study period and Dengue virus serotype 2 (DENV-2) was the most prevalent serotype during 2010, whilst DENV-1 was the most prevalent serotype in 2013. Two DENV-1 strains from the 2013 DENV epidemic were genetically more closely related to South East Asian strains, than Caribbean or South American strains, and represent the first ever sequencing of DENV strains in Barbados. However, the small sample size (n = 2) limits any meaningful conclusions. DF prevalence rates were not significantly different between females and males. Public health planning should consider DENV inter-epidemic periodicity, the current COVID-19 pandemic and similar clinical symptomology between DF and COVID-19. The implementation of routine sequencing of DENV strains to obtain critical data can aid in battling DENV epidemics in Barbados.

16.
Emerg Microbes Infect ; 9(1): 1080-1091, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32471334

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS). RBD-LS vaccination induced antibody responses of high magnitude and quality (avidity, MERS-CoV neutralizing capacity, and mucosal immunity) with cross-clade neutralization. The antibody responses were associated with blocking viral replication and upper and lower respiratory tract protection against MERS-CoV infection in rabbits. This arrayed multivalent presentation of the viral RBD using the antigen-SpyTag/LS-SpyCatcher is a promising MERS-CoV vaccine candidate and this platform may be applied for the rapid development of vaccines against other emerging viruses such as SARS-CoV-2.


Asunto(s)
Formación de Anticuerpos , Presentación de Antígeno , Infecciones por Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Sitios de Unión , Infecciones por Coronavirus/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Inmunogenicidad Vacunal , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Conejos , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Replicación Viral
18.
Front Public Health ; 7: 333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781532

RESUMEN

Background: Zika virus (ZIKV) emerged in May 2015 in Brazil, from which it spread to many other countries in Latin America. Cases of ZIKV infection were eventually also reported in Curaçao (January 2016) and Bonaire (February 2016). Methods: In the period of 16 December 2015 until 26 April 2017, serum, EDTA-plasma or urine samples were taken at Medical Laboratory Services (MLS) from patients on Curaçao and tested in qRT-PCR at the Erasmus Medical Centre (EMC) in the Netherlands. Between 17 October 2016 until 26 April 2017 all samples of suspected ZIKV-patients collected on Curaçao, as well as on Bonaire, were tested at MLS. Paired urine and/or serum samples from patients were analyzed for ZIKV shedding kinetics, and compared in terms of sensitivity for ZIKV RNA detection. Furthermore, the age and gender of patients were used to determine ZIKV incidence rates, and their geozone location to determine the spatial distribution of ZIKV cases. Results: In total, 781 patients of 2820 tested individuals were found qRT-PCR-positive for ZIKV on Curaçao. The first two ZIKV cases were diagnosed in December 2015. A total of 112 patients of 382 individuals tested qRT-PCR-positive for ZIKV on Bonaire. For both islands, the peak number of absolute cases occurred in November 2016, with 247 qRT-PCR confirmed cases on Curaçao and 66 qRT-PCR-positive cases on Bonaire. Overall, a higher proportion of women than men was diagnosed with ZIKV on both islands, as well as mostly individuals in the age category of 25-54 years old. Furthermore, ZIKV cases were mostly clustered in the east of the island, in Willemstad. Conclusions: ZIKV cases confirmed by qRT-PCR indicate that the virus was circulating on Curaçao between at least December 2015 and March 2017, and on Bonaire between at least October 2016 and February 2017, with peak cases occurring in November 2016. The lack of preparedness of Curaçao for the ZIKV outbreak was compensated by shipping all samples to the EMC for diagnostic testing; however, both islands will need to put the right infrastructure in place to enable a rapid response to an outbreak of any new emergent virus in the future.

19.
Vaccines (Basel) ; 7(3)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340594

RESUMEN

Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal-foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.

20.
J Clin Virol ; 117: 68-72, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31229935

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging arbovirus capable of causing chronic arthralgia, which can last for months to years. Although neutralizing antibodies have been shown to be important for viral clearance, is it not clear whether the quantitative and qualitative nature of antibodies play a role in progression to chronic disease. OBJECTIVES: To characterize and compare the antibody responses in acute and chronic patients in a prospective observational CHIKV study in Curaçao during the 2014-2015 outbreak. STUDY DESIGN: We performed virus neutralization tests and ELISA on plasma samples collected from a prospective observational chikungunya study in Curaçao to compare the complement-dependent and -independent neutralization capacity, as well as the antibody avidity index of acute and chronic patients. RESULTS: We found that there was no significant difference in the virus neutralization titers between patients with acute and chronic chikungunya infection. Furthermore, we found that complement increased the neutralization capacity when large amounts of virus was used. Moreover, we found that patients with acute chikungunya disease had a significantly higher antibody avidity index compared to those with chronic disease. CONCLUSIONS: This study suggests that virus neutralization titers in late convalescent sera do not play a role in chronic chikungunya. However, the median antibody avidity was lower in these patients and may therefore suggest a role for antibody avidity in the development of chronic disease.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Artralgia/virología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Animales , Anticuerpos Antivirales/sangre , Afinidad de Anticuerpos , Chlorocebus aethiops , Proteínas del Sistema Complemento/metabolismo , Curazao , Brotes de Enfermedades , Progresión de la Enfermedad , Humanos , Pruebas de Neutralización , Estudios Prospectivos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA