Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(2): 529-542, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135755

RESUMEN

Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary ß subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Ratones Endogámicos C57BL , Animales , Etanol/farmacología , Masculino , Ratones , Consumo de Bebidas Alcohólicas/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Femenino
2.
Sci Adv ; 8(29): eabo5047, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867794

RESUMEN

The heterogeneous pathophysiology of traumatic brain injury (TBI) is a barrier to advancing diagnostics and therapeutics, including targeted drug delivery. We used a unique discovery pipeline to identify novel targeting motifs that recognize specific temporal phases of TBI pathology. This pipeline combined in vivo biopanning with domain antibody (dAb) phage display, next-generation sequencing analysis, and peptide synthesis. We identified targeting motifs based on the complementarity-determining region 3 structure of dAbs for acute (1 day post-injury) and subacute (7 days post-injury) post-injury time points in a preclinical TBI model (controlled cortical impact). Bioreactivity and temporal sensitivity of the targeting motifs were validated via immunohistochemistry. Immunoprecipitation-mass spectrometry indicated that the acute TBI targeting motif recognized targets associated with metabolic and mitochondrial dysfunction, whereas the subacute TBI motif was largely associated with neurodegenerative processes. This pipeline successfully discovered temporally specific TBI targeting motif/epitope pairs that will serve as the foundation for the next-generation targeted TBI therapeutics and diagnostics.


Asunto(s)
Bacteriófagos , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/genética , Técnicas de Visualización de Superficie Celular , Humanos
3.
Curr Protoc ; 1(2): e67, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33625787

RESUMEN

The heterogeneous injury pathophysiology of traumatic brain injury (TBI) is a barrier to developing highly sensitive and specific diagnostic tools. Phage display, a protein-protein screening technique routinely used in drug development, has the potential to be a powerful biomarker discovery tool for TBI. However, analysis of these large and diverse phage libraries is a bottleneck to moving through the discovery pipeline in a timely and efficient manner. This article describes a unique discovery pipeline involving domain antibody (dAb) phage in vivo biopanning and next-generation sequencing (NGS) analysis to identify targeting motifs that recognize distinct aspects of TBI pathology. To demonstrate this process, we conduct in vivo biopanning on the controlled cortical impact mouse model of experimental TBI at 1 and 7 days postinjury. Phage accumulation in target tissues is quantified via titers before NGS preparation and analysis. This phage display biomarker discovery pipeline for TBI successfully achieves discovery of temporally specific TBI targeting motifs and may further TBI biomarker research for other characteristics of injury. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Phage production and purification Support Protocol: Controlled cortical impact model Basic Protocol 2: Injection and elution of phage Basic Protocol 3: Amplicon sequencing and sequence analysis.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Animales , Bacteriófagos/genética , Biomarcadores , Bioprospección , Técnicas de Visualización de Superficie Celular , Ratones
4.
J Biol Eng ; 13: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828380

RESUMEN

Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA