Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 943: 173649, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852865

RESUMEN

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Polen , Esporas Fúngicas , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Microbiología del Aire , Viento , Análisis Espectral/métodos
2.
Sci Total Environ ; 905: 167042, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709071

RESUMEN

Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.


Asunto(s)
Contaminantes Atmosféricos , Asma , Alérgenos/análisis , Polen/química , Material Particulado/análisis , Europa (Continente) , Contaminantes Atmosféricos/análisis
3.
Sci Total Environ ; 866: 161220, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36584954

RESUMEN

To benefit allergy patients and the medical practitioners, pollen information should be available in both a reliable and timely manner; the latter is only recently possible due to automatic monitoring. To evaluate the performance of all currently available automatic instruments, an international intercomparison campaign was jointly organised by the EUMETNET AutoPollen Programme and the ADOPT COST Action in Munich, Germany (March-July 2021). The automatic systems (hardware plus identification algorithms) were compared with manual Hirst-type traps. Measurements were aggregated into 3-hourly or daily values to allow comparison across all devices. We report results for total pollen as well as for Betula, Fraxinus, Poaceae, and Quercus, for all instruments that provided these data. The results for daily averages compared better with Hirst observations than the 3-hourly values. For total pollen, there was a considerable spread among systems, with some reaching R2 > 0.6 (3 h) and R2 > 0.75 (daily) compared with Hirst-type traps, whilst other systems were not suitable to sample total pollen efficiently (R2 < 0.3). For individual pollen types, results similar to the Hirst were frequently shown by a small group of systems. For Betula, almost all systems performed well (R2 > 0.75 for 9 systems for 3-hourly data). Results for Fraxinus and Quercus were not as good for most systems, while for Poaceae (with some exceptions), the performance was weakest. For all pollen types and for most measurement systems, false positive classifications were observed outside of the main pollen season. Different algorithms applied to the same device also showed different results, highlighting the importance of this aspect of the measurement system. Overall, given the 30 % error on daily concentrations that is currently accepted for Hirst-type traps, several automatic systems are currently capable of being used operationally to provide real-time observations at high temporal resolutions. They provide distinct advantages compared to the manual Hirst-type measurements.


Asunto(s)
Alérgenos , Hipersensibilidad , Humanos , Monitoreo del Ambiente/métodos , Polen , Estaciones del Año , Poaceae , Betula
4.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36433340

RESUMEN

The real-time monitoring of primary biological aerosol particles (PBAP) such as pollen and fungal spores has received much attention in recent years as a result of their health and climatic effects. In this study, the Wideband Integrated Bioaerosol Sensor (WIBS) 4+ model was evaluated for its ability to sample and detect ambient fungal spore and pollen concentrations, compared to the traditional Hirst volumetric method. Although the determination of total pollen and fungal spore ambient concentrations are of interest, the selective detection of individual pollen/fungal spore types are often of greater allergenic/agricultural concern. To aid in this endeavour, modifications were made to the WIBS-4 instrument to target chlorophyll fluorescence. Two additional fluorescence channels (FL4 and FL5 channels) were combined with the standard WIBS channels (FL1, FL2, FL3). The purpose of this modification is to help discriminate between grass and herb pollen from other pollen. The WIBS-4+ was able to successfully detect and differentiate between different bioaerosol classes. The addition of the FL4 and FL5 channels also allowed for the improved differentiation between tree (R2 = 0.8), herbaceous (R2 = 0.6) and grass (R2 = 0.4) pollen and fungal spores (R2 = 0.8). Both grass and herbaceous pollen types showed a high correlation with D type particles, showing strong fluorescence in the FL4 channel. The additional fluorescent data that were introduced also improved clustering attempts, making k-means clustering a comparable solution for this high-resolution data.


Asunto(s)
Monitoreo del Ambiente , Polen , Esporas Fúngicas , Monitoreo del Ambiente/métodos , Polen/química , Alérgenos , Aerosoles , Poaceae
5.
Aerobiologia (Bologna) ; 38(3): 343-366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199733

RESUMEN

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017-2019 and 2018-2019, respectively, are presented herein. Additional unpublished pollen data from 1978-1980 and, 2010-2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09751-w.

6.
Sci Total Environ ; 823: 153596, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122844

RESUMEN

Alternaria conidia have high allergenic potential and they can trigger important respiratory diseases. Due to that and to their extensive detection period, airborne Alternaria spores are considered as a relevant airborne allergenic particle. Several studies have been developed in order to predict the human exposure to this aeroallergen and to prevent their negative effects on sensitive population. These studies revealed that some sampling locations usually have just one single Alternaria spore season while other locations generally have two seasons within the same year. However, the reasons of these two different seasonal patterns remain unclear. To understand them better, the present study was carried out in order to determine if there are any weather conditions that influence these different behaviours at different sampling locations. With this purpose, the airborne Alternaria spore concentrations of 18 sampling locations in a wide range of latitudinal, altitudinal and climate ranges of Spain were studied. The aerobiological samples were obtained by means of Hirst-Type volumetric pollen traps, and the seasonality of the airborne Alternaria spores were analysed. The optimal weather conditions for spore production were studied, and the main weather factor affecting Alternaria spore seasonality were analysed by means of random forests and regression trees. The results showed that the temperature was the most relevant variable for the Alternaria spore dispersion and it influenced both the spore integrals and their seasonality. The water availability was also a very significant variable. Warmer sampling locations generally have a longer period of Alternaria spore detection. However, the spore production declines during the summer when the temperatures are extremely warm, what splits the favourable period for Alternaria spore production and dispersion into two separate ones, detected as two Alternaria spore seasons within the same year.


Asunto(s)
Microbiología del Aire , Alternaria , Alérgenos/análisis , Monitoreo del Ambiente , Humanos , Estaciones del Año , España , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...