Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559242

RESUMEN

Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.

2.
RSC Med Chem ; 12(3): 330-352, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34046619

RESUMEN

Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.

3.
Nat Commun ; 12(1): 582, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495441

RESUMEN

Tumour necrosis factor (TNF) is a trimeric protein which signals through two membrane receptors, TNFR1 and TNFR2. Previously, we identified small molecules that inhibit human TNF by stabilising a distorted trimer and reduce the number of receptors bound to TNF from three to two. Here we present a biochemical and structural characterisation of the small molecule-stabilised TNF-TNFR1 complex, providing insights into how a distorted TNF trimer can alter signalling function. We demonstrate that the inhibitors reduce the binding affinity of TNF to the third TNFR1 molecule. In support of this, we show by X-ray crystallography that the inhibitor-bound, distorted, TNF trimer forms a complex with a dimer of TNFR1 molecules. This observation, along with data from a solution-based network assembly assay, leads us to suggest a model for TNF signalling based on TNF-TNFR1 clusters, which are disrupted by small molecule inhibitors.


Asunto(s)
Multimerización de Proteína/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/química , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Necrosis Tumoral alfa/química , Algoritmos , Animales , Unión Competitiva/efectos de los fármacos , Humanos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Am Chem Soc ; 133(28): 10892-900, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21618981

RESUMEN

The current drive for applications of biomass-derived compounds, for energy and advanced materials, has led to a resurgence of interest in the manipulation of plant polymers. The xyloglucans, a family of structurally complex plant polysaccharides, have attracted significant interest due to their intrinsic high affinity for cellulose, both in muro and in technical applications. Moreover, current cell wall models are limited by the lack of detailed structure-property relationships of xyloglucans, due to a lack of molecules with well-defined branching patterns. Here, we have developed a new, broad-specificity "xyloglucan glycosynthase", selected from active-site mutants of a bacterial endoxyloglucanase, which catalyzed the synthesis of high molar mass polysaccharides, with complex side-chain structures, from suitable glycosyl fluoride donor substrates. The product range was further extended by combination with an Arabidopsis thaliana α(1→2)-fucosyltransferase to achieve the in vitro synthesis of fucosylated xyloglucans typical of dicot primary cell walls. These enzymes thus comprise a toolkit for the controlled enzymatic synthesis of xyloglucans that are otherwise impossible to obtain from native sources. Moreover, this study demonstrates the validity of a chemo-enzymatic approach to polysaccharide synthesis, in which the simplicity and economy of glycosynthase technology is harnessed together with the exquisite specificity of glycosyltransferases to control molecular complexity.


Asunto(s)
Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glucanos/biosíntesis , Ingeniería de Proteínas/métodos , Xilanos/biosíntesis , Arabidopsis/enzimología , Secuencia de Carbohidratos , Dominio Catalítico , Fucosiltransferasas/química , Glucanos/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Paenibacillus/enzimología , Polimerizacion , Especificidad por Sustrato , Xilanos/química , Galactósido 2-alfa-L-Fucosiltransferasa
5.
J Biol Chem ; 286(17): 15155-64, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21288903

RESUMEN

The enzymatic transfer of the sugar mannose from activated sugar donors is central to the synthesis of a wide range of biologically significant polysaccharides and glycoconjugates. In addition to their importance in cellular biology, mannosyltransferases also provide model systems with which to study catalytic mechanisms of glycosyl transfer. Mannosylglycerate synthase (MGS) catalyzes the synthesis of α-mannosyl-D-glycerate using GDP-mannose as the preferred donor species, a reaction that occurs with a net retention of anomeric configuration. Past work has shown that the Rhodothermus marinus MGS, classified as a GT78 glycosyltransferase, displays a GT-A fold and performs catalysis in a metal ion-dependent manner. MGS shows very unusual metal ion dependences with Mg(2+) and Ca(2+) and, to a lesser extent, Mn(2+), Ni(2+), and Co(2+), thus facilitating catalysis. Here, we probe these dependences through kinetic and calorimetric analyses of wild-type and site-directed variants of the enzyme. Mutation of residues that interact with the guanine base of GDP are correlated with a higher k(cat) value, whereas substitution of His-217, a key component of the metal coordination site, results in a change in metal specificity to Mn(2+). Structural analyses of MGS complexes not only provide insight into metal coordination but also how lactate can function as an alternative acceptor to glycerate. These studies highlight the role of flexible loops in the active center and the subsequent coordination of the divalent metal ion as key factors in MGS catalysis and metal ion dependence. Furthermore, Tyr-220, located on a flexible loop whose conformation is likely influenced by metal binding, also plays a critical role in substrate binding.


Asunto(s)
Catálisis , Manosiltransferasas/química , Metales/metabolismo , Rhodothermus/enzimología , Proteínas Bacterianas , Calcio , Cinética , Magnesio , Manosiltransferasas/genética , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
6.
Biochem Soc Trans ; 38(5): 1179-88, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20863281

RESUMEN

Carbohydrates, their structures and the enzymes responsible for their synthesis and degradation, offer numerous possibilities for the design and application of probes with which to study and treat disease. The intracellular dynamic O-GlcNAc (O-linked ß-N-acetylglucosamine) modification is one such glycosylation with considerable medical interest, reflecting its implication in diseases such as Type 2 diabetes and neurodegeneration. In the present paper, we review recent structural and mechanistic studies into the enzymes responsible for this modification, highlighting how mechanism-inspired small-molecule probes may be applied to study potential disease processes. Such studies have questioned a causal link between O-GlcNAc and Type 2 diabetes, but do offer potential for the study, and perhaps the treatment, of tauopathies.


Asunto(s)
Acetilglucosamina/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
8.
Biochim Biophys Acta ; 1800(2): 122-33, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19647042

RESUMEN

In order to study the O-GlcNAc modification in vivo, it is evident that a range of specific small molecule inhibitors would be a valuable asset. One strategy for the design of such compounds would be to utilise 3-D structural information in tandem with knowledge of catalytic mechanism. The last few years has seen major breakthroughs in our understanding of the 3-D structure of the enzymes involved in the O-GlcNAc modification notably from the study of the tetratricopeptide repeat (TPR) domain of the human O-GlcNAc transferase, of the bacterial homologs of the O-GlcNAc hydrolase and more latterly bacterial homologs of the O-GlcNAc transferase itself. Of particular note are the bacterial O-GlcNAc hydrolase homologs that provide near identical active centres to the human enzyme. These have informed the design and/or subsequent analysis of inhibitors of this enzyme which have found great use in the chemical dissection of the O-GlcNAc in vivo, as described by Macauley and Vocadlo elsewhere in this issue.


Asunto(s)
Acetilglucosaminidasa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosaminidasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tiazoles/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-19850999

RESUMEN

The crystal structures of truncated forms of the Streptococcus pyogenes phage-encoded hyaluronate lyases HylP2 and HylP3 were determined by molecular replacement to 1.6 and 1.9 A resolution, respectively. The truncated forms crystallized in a hexagonal space group, forming a trimer around the threefold crystallographic axis. The arrangement of the fold is very similar to that observed in the structure of the related hyaluronate lyase HylP1. The structural elements putatively involved in substrate recognition are found to be conserved in both the HylP2 and HylP3 fragments.


Asunto(s)
Polisacárido Liasas/química , Bacteriófagos/metabolismo , Cristalografía por Rayos X , Streptococcus pyogenes/enzimología
10.
Carbohydr Res ; 344(13): 1753-7, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19595298

RESUMEN

Lysozymes are found in many of the sequence-based families of glycoside hydrolases (www.cazy.org) where they show considerable structural and mechanistic diversity. Lysozymes from glycoside hydrolase family GH25 adopt a (alpha/beta)(5)(beta)(3)-barrel-like fold with a proposal in the literature that these enzymes act with inversion of anomeric configuration; the lack of a suitable substrate, however, means that no group has successfully demonstrated the configuration of the product. Here we report the 3-D structure of the GH25 enzyme from Bacillus anthracis at 1.4A resolution. We show that the active center is extremely similar to those from glycoside hydrolase families GH18, GH20, GH56, GH84, and GH85 implying that, in the absence of evidence to the contrary, GH25 enzymes also act with net retention of anomeric configuration using the neighboring-group catalytic mechanism that is common to this 'super-family' of enzymes.


Asunto(s)
Bacillus anthracis/enzimología , Biocatálisis , Muramidasa/química , Muramidasa/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glicósidos/metabolismo , Hidrólisis , Modelos Moleculares
11.
Cancer Res ; 69(14): 5851-9, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19584289

RESUMEN

Overexpression of the epidermal growth factor (EGF) receptor (EGFR) in cancer cells correlates with tumor malignancy and poor prognosis for cancer patients. For this reason, the EGFR has become one of the main targets of anticancer therapies. Structural data obtained in the last few years have revealed the molecular mechanism for ligand-induced EGFR dimerization and subsequent signal transduction, and also how this signal is blocked by either monoclonal antibodies or small molecules. Nimotuzumab (also known as h-R3) is a humanized antibody that targets the EGFR and has been successful in the clinics. In this work, we report the crystal structure of the Fab fragment of Nimotuzumab, revealing some unique structural features in the heavy variable domain. Furthermore, competition assays show that Nimotuzumab binds to domain III of the extracellular region of the EGFR, within an area that overlaps with both the surface patch recognized by Cetuximab (another anti-EGFR antibody) and the binding site for EGF. A computer model of the Nimotuzumab-EGFR complex, constructed by docking and molecular dynamics simulations and supported by mutagenesis studies, unveils a novel mechanism of action, with Nimotuzumab blocking EGF binding while still allowing the receptor to adopt its active conformation, hence warranting a basal level of signaling.


Asunto(s)
Anticuerpos Monoclonales/química , Antineoplásicos/química , Receptores ErbB/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Receptores ErbB/genética , Receptores ErbB/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Ligandos , Ratones , Modelos Moleculares , Conformación Molecular , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
12.
Carbohydr Res ; 344(5): 627-31, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19217614

RESUMEN

Despite decades of its use in diabetes research, the mechanism of cytotoxicity of streptozotocin (STZ) toward pancreatic beta-islet cells has remained a topic of discussion. Although STZ toxicity is likely a function of its capacity to promote DNA alkylation, it has been proposed that STZ induces pancreatic beta-cell death through O-GlcNAcase inhibition. In this report, we explore the binding mode of STZ to a close homolog of human O-GlcNAcase, BtGH84 from Bacteroides thetaiotaomicron. Our results show that STZ binds in the enzyme active site in its intact form, without the formation of a covalent adduct, consistent with solution studies on BtGH84 and human O-GlcNAcase, as well as with structural work on a homolog from Clostridium perfringens. The active site of the BtGH84 is considerably deformed upon STZ binding and as a result the catalytic machinery is expelled from the binding cavity.


Asunto(s)
Acetilglucosaminidasa/antagonistas & inhibidores , Acetilglucosaminidasa/química , Inhibidores Enzimáticos/farmacología , Estreptozocina/química , Estreptozocina/farmacología , Bacteroides/enzimología , Calorimetría , Clostridium perfringens/enzimología , Cristalografía por Rayos X/métodos , Humanos , Modelos Moleculares , Unión Proteica
13.
J Biol Chem ; 283(50): 34687-95, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18842583

RESUMEN

The O-GlcNAc post-translational modification is considered to act as a sensor of nutrient flux through the hexosamine biosynthetic pathway. A cornerstone of this hypothesis is that global elevation of protein O-GlcNAc levels, typically induced with the non-selective O-GlcNAcase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-D-glycopyranosylidene) amino-N-phenylcarbamate), causes insulin resistance in adipocytes. Here we address the potential link between elevated O-GlcNAc and insulin resistance by using a potent and selective inhibitor of O-GlcNAcase (NButGT (1,2-dideoxy-2'-propyl-alpha-D-glucopyranoso-[2,1-D]-Delta 2'-thiazoline), 1200-fold selectivity). A comparison of the structures of a bacterial homologue of O-GlcNAcase in complex with PUGNAc or NButGT reveals that these inhibitors bind to the same region of the active site, underscoring the competitive nature of their inhibition of O-GlcNAcase and the molecular basis of selectivity. Treating 3T3-L1 adipocytes with NButGT induces rapid increases in global O-GlcNAc levels, but strikingly, NButGT treatment does not replicate the insulin desensitizing effects of the non-selective O-GlcNAcase inhibitor PUGNAc. Consistent with these observations, NButGT also does not recapitulate the impaired insulin-mediated phosphorylation of Akt that is induced by treatment with PUGNAc. Collectively, these results suggest that increases in global levels of O-GlcNAc-modified proteins of cultured adipocytes do not, on their own, cause insulin resistance.


Asunto(s)
Acetilglucosamina/metabolismo , Acetilglucosaminidasa/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Cinética , Ratones , Modelos Biológicos , Modelos Químicos , Conformación Molecular , Fosforilación , Procesamiento Proteico-Postraduccional
15.
Nat Struct Mol Biol ; 15(7): 764-5, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536723

RESUMEN

N-Acetylglucosamine (O-GlcNAc) modification of proteins provides a mechanism for the control of diverse cellular processes through a dynamic interplay with phosphorylation. UDP-GlcNAc:polypeptidyl transferase (OGT) catalyzes O-GlcNAc addition. The structure of an intact OGT homolog and kinetic analysis of human OGT variants reveal a contiguous superhelical groove that directs substrates to the active site.


Asunto(s)
Espacio Intracelular/metabolismo , N-Acetilglucosaminiltransferasas/química , Homología Estructural de Proteína , Xanthomonas/enzimología , Sitios de Unión , Glicosilación , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Relación Estructura-Actividad
16.
J Biol Chem ; 283(26): 18422-30, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18445585

RESUMEN

The plant cell wall degrading apparatus of anaerobic bacteria includes a large multienzyme complex termed the "cellulosome." The complex assembles through the interaction of enzyme-derived dockerin modules with the multiple cohesin modules of the noncatalytic scaffolding protein. Here we report the crystal structure of the Clostridium cellulolyticum cohesin-dockerin complex in two distinct orientations. The data show that the dockerin displays structural symmetry reflected by the presence of two essentially identical cohesin binding surfaces. In one binding mode, visualized through the A16S/L17T dockerin mutant, the C-terminal helix makes extensive interactions with its cohesin partner. In the other binding mode observed through the A47S/F48T dockerin variant, the dockerin is reoriented by 180 degrees and interacts with the cohesin primarily through the N-terminal helix. Apolar interactions dominate cohesin-dockerin recognition that is centered around a hydrophobic pocket on the surface of the cohesin, formed by Leu-87 and Leu-89, which is occupied, in the two binding modes, by the dockerin residues Phe-19 and Leu-50, respectively. Despite the structural similarity between the C. cellulolyticum and Clostridium thermocellum cohesins and dockerins, there is no cross-specificity between the protein partners from the two organisms. The crystal structure of the C. cellulolyticum complex shows that organism-specific recognition between the protomers is dictated by apolar interactions primarily between only two residues, Leu-17 in the dockerin and the cohesin amino acid Ala-129. The biological significance of the plasticity in dockerin-cohesin recognition, observed here in C. cellulolyticum and reported previously in C. thermocellum, is discussed.


Asunto(s)
Proteínas de Ciclo Celular/química , Celulasa/química , Proteínas Cromosómicas no Histona/química , Clostridium cellulolyticum/metabolismo , Pared Celular/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Biológicos , Conformación Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura , Termodinámica , Cohesinas
17.
Proc Natl Acad Sci U S A ; 104(13): 5336-41, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17376874

RESUMEN

Glycosylation of macrolide antibiotics confers host cell immunity from endogenous and exogenous agents. The Streptomyces antibioticus glycosyltransferases, OleI and OleD, glycosylate and inactivate oleandomycin and diverse macrolides including erythromycin, respectively. The structure of these enzyme-ligand complexes, in tandem with kinetic analysis of site-directed variants, provide insight into the interaction of macrolides with their synthetic apparatus. Erythromycin binds to OleD and the 23S RNA of its target ribosome in the same conformation and, although the antibiotic contains a large number of polar groups, its interaction with these macromolecules is primarily through hydrophobic contacts. Erythromycin and oleandomycin, when bound to OleD and OleI, respectively, adopt different conformations, reflecting a subtle effect on sugar positioning by virtue of a single change in the macrolide backbone. The data reported here provide structural insight into the mechanism of resistance to both endogenous and exogenous antibiotics, and will provide a platform for the future redesign of these catalysts for antibiotic remodelling.


Asunto(s)
Antibacterianos/química , Glucosiltransferasas/química , Glicosiltransferasas/química , Macrólidos/química , Proteínas Bacterianas , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Escherichia coli/metabolismo , Cinética , Modelos Biológicos , Modelos Químicos , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Streptomyces/metabolismo
18.
Chem Biol ; 13(11): 1143-52, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17113996

RESUMEN

Glycosyltransferases (GTs) catalyze the synthesis of the myriad glycoconjugates that are central to life. One of the largest families is GT4, which contains several enzymes of therapeutic significance, exemplified by WaaG and AviGT4. WaaG catalyses a key step in lipopolysaccharide synthesis, while AviGT4, produced by Streptomyces viridochromogenes, contributes to the synthesis of the antibiotic avilamycin A. Here we present the crystal structure of both WaaG and AviGT4. The two enzymes contain two "Rossmann-like" (beta/alpha/beta) domains characteristic of the GT-B fold. Both recognition of the donor substrate and the catalytic machinery is similar to other retaining GTs that display the GT-B fold. Structural information is discussed with respect to the evolution of GTs and the therapeutic significance of the two enzymes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Glucosiltransferasas/química , Metiltransferasas/química , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia de Carbohidratos , Proteínas de Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Lipopolisacáridos/biosíntesis , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oligosacáridos/biosíntesis , Oligosacáridos/química , Conformación Proteica
19.
J Biol Chem ; 281(34): 24922-33, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16772298

RESUMEN

The enzymatic degradation of the plant cell wall is central both to the natural carbon cycle and, increasingly, to environmentally friendly routes to biomass conversion, including the production of biofuels. The plant cell wall is a complex composite of cellulose microfibrils embedded in diverse polysaccharides collectively termed hemicelluloses. Xyloglucan is one such polysaccharide whose hydrolysis is catalyzed by diverse xyloglucanases. Here we present the structure of the Clostridium thermocellum xyloglucanase Xgh74A in both apo and ligand-complexed forms. The structures, in combination with mutagenesis data on the catalytic residues and the kinetics and specificity of xyloglucan hydrolysis reveal a complex subsite specificity accommodating seventeen monosaccharide moieties of the multibranched substrate in an open substrate binding terrain.


Asunto(s)
Glicósido Hidrolasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Catálisis , Dominio Catalítico , Clostridium thermocellum/enzimología , Glucanos/química , Glucanos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Xilanos/química , Xilanos/metabolismo
20.
EMBO J ; 25(6): 1396-405, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16482224

RESUMEN

Glycosylation is a key mechanism for orchestrating the bioactivity, metabolism and location of small molecules in living cells. In plants, a large multigene family of glycosyltransferases is involved in these processes, conjugating hormones, secondary metabolites, biotic and abiotic environmental toxins, to impact directly on cellular homeostasis. The red grape enzyme UDP-glucose:flavonoid 3-O-glycosyltransferase (VvGT1) is responsible for the formation of anthocyanins, the health-promoting compounds which, in planta, function as colourants determining flower and fruit colour and are precursors for the formation of pigmented polymers in red wine. We show that VvGT1 is active, in vitro, on a range of flavonoids. VvGT1 is somewhat promiscuous with respect to donor sugar specificity as dissected through full kinetics on a panel of nine sugar donors. The three-dimensional structure of VvGT1 has also been determined, both in its 'Michaelis' complex with a UDP-glucose-derived donor and the acceptor kaempferol and in complex with UDP and quercetin. These structures, in tandem with kinetic dissection of activity, provide the foundation for understanding the mechanism of these enzymes in small molecule homeostasis.


Asunto(s)
Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Quempferoles/metabolismo , Quercetina/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato/metabolismo , Cristalografía por Rayos X , Glucosiltransferasas/genética , Glicosilación , Cinética , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA