Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1347982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375080

RESUMEN

GacS/GacA is a widely distributed two-component system playing an essential role as a key global regulator, although its characterization in phytopathogenic bacteria has been deeply biased, being intensively studied in pathogens of herbaceous plants but barely investigated in pathogens of woody hosts. P. savastanoi pv. savastanoi (Psv) is characterized by inducing tumours in the stem and branches of olive trees. In this work, the model strain Psv NCPPB 3335 and a mutant derivative with a complete deletion of gene gacA were subjected to RNA-Seq analyses in a minimum medium and a medium mimicking in planta conditions, accompanied by RT-qPCR analyses of selected genes and phenotypic assays. These experiments indicated that GacA participates in the regulation of at least 2152 genes in strain NCPPB 3335, representing 37.9 % of the annotated CDSs. GacA also controls the expression of diverse rsm genes, and modulates diverse phenotypes, including motility and resistance to oxidative stresses. As occurs with other P. syringae pathovars of herbaceous plants, GacA regulates the expression of the type III secretion system and cognate effectors. In addition, GacA also regulates the expression of WHOP genes, specifically encoded in P. syringe strains isolated from woody hosts, and genes for the biosynthesis of phytohormones. A gacA mutant of NCPPB 3335 showed increased virulence, producing large immature tumours with high bacterial populations, but showed a significantly reduced competitiveness in planta. Our results further extend the role of the global regulator GacA in the virulence and fitness of a P. syringae pathogen of woody hosts.

2.
Microorganisms ; 8(10)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036191

RESUMEN

The widely conserved Csr/Rsm (carbon storage regulator/repressor of stationary-phase metabolites) post-transcriptional regulatory system controls diverse phenotypes involved in bacterial pathogenicity and virulence. Here we show that Pseudomonas amygdali pv. phaseolicola 1448A contains seven rsm genes, four of which are chromosomal. In RNAseq analyses, only rsmE was thermoregulated, with increased expression at 18 °C, whereas the antagonistic sRNAs rsmX1, rsmX4, rsmX5 and rsmZ showed increased levels at 28 °C. Only double rsmA-rsmE mutants showed significantly altered phenotypes in functional analyses, being impaired for symptom elicitation in bean, including in planta growth, and for induction of the hypersensitive response in tobacco. Double mutants were also non-motile and were compromised for the utilization of different carbon sources. These phenotypes were accompanied by reduced mRNA levels of the type III secretion system regulatory genes hrpL and hrpA, and the flagellin gene, fliC. Biosynthesis of the phytotoxin phaseolotoxin by mutants in rsmA and rsmE was delayed, occurring only in older cultures, indicating that these rsm homologues act as inductors of toxin synthesis. Therefore, genes rsmA and rsmE act redundantly, although with a degree of specialization, to positively regulate diverse phenotypes involved in niche colonization. Additionally, our results suggest the existence of a regulatory molecule different from the Rsm proteins and dependent on the GacS/GacA (global activator of antibiotic and cyanide production) system, which causes the repression of phaseolotoxin biosynthesis at high temperatures.

3.
Curr Issues Mol Biol ; 25: 199-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28875945

RESUMEN

Plant pathogenic bacteria are responsible for the loss of hundreds of millions of dollars each year, impacting a wide range of economically relevant agricultural crops. The plant immune system detects conserved bacterial molecules and deploys an arsenal of effective defense measures at different levels; however, during compatible interactions, some pathogenic bacteria suppress and manipulate the host immunity and colonize and infect the plant host. Different bacteria employ similar strategies to circumvent plant innate immunity, while other tactics are specific to certain bacterial species. Recent studies have highlighted the secondary messenger c-di-GMP as a key molecule in the transmission of environmental cues in an intracellular regulatory network that controls virulence traits in many plant pathogenic bacteria. In this review, we focus on the recent knowledge of the molecular basis of c-di-GMP signaling mechanisms that promote or prevent the evasion of bacterial phytopathogens from the plant immune system. This review will highlight the considerable diversity of mechanisms evolved in plant-associated bacteria to elude plant immunity.


Asunto(s)
Productos Agrícolas/microbiología , GMP Cíclico/análogos & derivados , Evasión Inmune , Oryza/microbiología , Inmunidad de la Planta/genética , Productos Agrícolas/genética , Productos Agrícolas/inmunología , GMP Cíclico/biosíntesis , GMP Cíclico/inmunología , Defensinas/biosíntesis , Defensinas/inmunología , Erwinia amylovora/genética , Erwinia amylovora/inmunología , Erwinia amylovora/patogenicidad , Regulación de la Expresión Génica , Oryza/genética , Oryza/inmunología , Oxilipinas/inmunología , Oxilipinas/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Sesquiterpenos/inmunología , Sesquiterpenos/metabolismo , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/inmunología , Virulencia , Xanthomonas/genética , Xanthomonas/inmunología , Xanthomonas/patogenicidad , Xylella/genética , Xylella/inmunología , Xylella/patogenicidad , Fitoalexinas
4.
Sci Rep ; 7(1): 11326, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900103

RESUMEN

Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.


Asunto(s)
Biopelículas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Peptidoglicano/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Biopelículas/crecimiento & desarrollo , Membrana Celular/metabolismo , Clonación Molecular , Biología Computacional/métodos , Secuencia Conservada , Proteínas de Escherichia coli/genética , Evolución Molecular , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Orden Génico , Genoma Bacteriano , Fenotipo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Sistemas de Secreción Tipo V/genética
5.
Front Plant Sci ; 8: 1089, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680437

RESUMEN

The study of the molecular basis of tree diseases is lately receiving a renewed attention, especially with the emerging perception that pathogens require specific pathogenicity and virulence factors to successfully colonize woody hosts. Pathosystems involving woody plants are notoriously difficult to study, although the use of model bacterial strains together with genetically homogeneous micropropagated plant material is providing a significant impetus to our understanding of the molecular determinants leading to disease. The gammaproteobacterium Pseudomonas savastanoi belongs to the intensively studied Pseudomonas syringae complex, and includes three pathogenic lineages causing tumorous overgrowths (knots) in diverse economically relevant trees and shrubs. As it occurs with many other bacteria, pathogenicity of P. savastanoi is dependent on a type III secretion system, which is accompanied by a core set of at least 20 effector genes shared among strains isolated from olive, oleander, and ash. The induction of knots of wild-type size requires that the pathogen maintains adequate levels of diverse metabolites, including the phytohormones indole-3-acetic acid and cytokinins, as well as cyclic-di-GMP, some of which can also regulate the expression of other pathogenicity and virulence genes and participate in bacterial competitiveness. In a remarkable example of social networking, quorum sensing molecules allow for the communication among P. savastanoi and other members of the knot microbiome, while at the same time are essential for tumor formation. Additionally, a distinguishing feature of bacteria from the P. syringae complex isolated from woody organs is the possession of a 15 kb genomic island (WHOP) carrying four operons and three other genes involved in degradation of phenolic compounds. Two of these operons mediate the catabolism of anthranilate and catechol and, together with another operon, are required for the induction of full-size tumors in woody hosts, but not in non-woody micropropagated plants. The use of transposon mutagenesis also uncovered a treasure trove of additional P. savastanoi genes affecting virulence and participating in diverse bacterial processes. Although there is still much to be learned on what makes a bacterium a successful pathogen of trees, we are already untying the knots.

6.
Environ Microbiol ; 18(12): 5228-5248, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27696649

RESUMEN

Initial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces. Functional characterisation of Yad fimbriae were undertook, and YadN was identified as the most abundant and potential major pilin, and YadC as the potential tip-protein of Yad fimbriae. It was showed that Yad production participates to binding of E. coli K-12 to human eukaryotic cells (Caco-2) and inhibits macrophage phagocytosis, but also enhances E. coli K-12 binding to xylose, a major component of the plant cell wall, through its tip-lectin YadC. Consistently, it was demonstrated that Yad production provides E. coli with a competitive advantage in colonising corn seed rhizospheres. The latter phenotype is correlated with induction of Yad expression at temperatures below 37°C, and under anaerobic conditions, through a complex regulatory network. Taken together, these results suggest that Yad fimbriae are versatile adhesins that beyond potential capacities to modulate host-pathogen interactions might contribute to E. coli environmental persistence.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Zea mays/microbiología , Adhesión Bacteriana , Células CACO-2 , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Humanos , Semillas/microbiología
7.
J Bacteriol ; 196(8): 1484-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24488315

RESUMEN

LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Factores de Transcripción/metabolismo , GMP Cíclico/metabolismo , Perfilación de la Expresión Génica
8.
Res Microbiol ; 164(5): 382-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23562948

RESUMEN

The extracellular matrix of bacterial biofilms has at least two key functions: to serve as a structural scaffold for the multicellular community, and to play a protective role against external stress. In this work, we report a compensatory effect whereby Pseudomonas putida reacts to the lack of either of the two main surface proteins involved in biofilm formation, LapA and LapF, by increasing expression and production of a species-specific EPS. Elevated levels of the second messenger molecule cyclic di-GMP alter the balance of extracellular matrix components, and the phenotypes of lapA and lapF mutants under these conditions are indicative of direct interactions taking place between large secreted proteins and exopolysaccharides. Our data suggest the existence of a mechanism by which bacteria would sense alterations in the composition of the extracellular matrix, leading to changes in expression of the different elements.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de la Matriz Extracelular/metabolismo , Pseudomonas putida/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas putida/metabolismo
9.
J Bacteriol ; 194(24): 6782-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042991

RESUMEN

LapF is a large secreted protein involved in microcolony formation and biofilm maturation in Pseudomonas putida. Its C-terminal domain shows the characteristics of proteins secreted through a type I secretion system and includes a predicted calcium binding motif. We provide experimental evidence of specific binding of Ca(2+) to the purified C-terminal domain of LapF (CLapF). Calcium promotes the formation of large aggregates, which disappear in the presence of the calcium chelator EGTA. Immunolocalization of LapF also shows the tendency of this protein to accumulate in vivo in certain extracellular regions. These findings, along with results showing that calcium influences biofilm formation, lead us to propose a model in which P. putida cells interact with each other via LapF in a calcium-dependent manner during the development of biofilms.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Calcio/metabolismo , Pseudomonas putida/fisiología , Adhesinas Bacterianas/química , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Egtácico/química , Regulación Bacteriana de la Expresión Génica , Multimerización de Proteína , Pseudomonas putida/química , Pseudomonas putida/genética
10.
Mol Microbiol ; 77(3): 549-61, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545856

RESUMEN

We have investigated the role of LapF, one of the two largest proteins encoded in the genome of Pseudomonas putida KT2440, in bacterial colonization of solid surfaces. LapF is 6310 amino acids long, and is localized on the cell surface. The C-terminal region of the protein is essential for its secretion, which presumably requires the ABC transporter encoded by an operon (lapHIJ) adjacent to the lapF gene. Although the initial attachment stages are not different between the wild type and a lapF mutant, microcolony formation and subsequent development of a mature biofilm is impaired in the mutant. This is consistent with the expression pattern of lapF; activation of its promoter takes place at late stages of growth and is regulated by the alternative sigma factor RpoS. A lapF mutant is also affected in individual and competitive plant root colonization. In these assays, mixed microcolonies formed by cells of both the wild-type and the mutant strains could be observed but microcolonies of the mutant alone were not found. These data and the localization of the protein at discrete spots in areas of contact between cells in biofilms suggest that LapF determines the establishment of cell-cell interactions during sessile growth.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Biopelículas , Raíces de Plantas/microbiología , Pseudomonas putida/crecimiento & desarrollo , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Adhesión Bacteriana , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Pseudomonas putida/genética , Pseudomonas putida/fisiología , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...