Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 29(5): 100160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761981

RESUMEN

Four years after the beginning of the COVID-19 pandemic, it is important to reflect on the events that have occurred during that time and the knowledge that has been gained. The response to the pandemic was rapid and highly resourced; it was also built upon a foundation of decades of federally funded basic and applied research. Laboratories in government, pharmaceutical, academic, and non-profit institutions all played roles in advancing pre-2020 discoveries to produce clinical treatments. This perspective provides a summary of how the development of high-throughput screening methods in a biosafety level 3 (BSL-3) environment at Southern Research Institute (SR) contributed to pandemic response efforts. The challenges encountered are described, including those of a technical nature as well as those of working under the pressures of an unpredictable virus and pandemic.


Asunto(s)
COVID-19 , Ensayos Analíticos de Alto Rendimiento , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/uso terapéutico , Antivirales/farmacología
2.
SLAS Discov ; 29(1): 66-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925159

RESUMEN

A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.


Asunto(s)
Gripe Humana , Animales , Perros , Humanos , Gripe Humana/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Línea Celular , Células de Riñón Canino Madin Darby , Técnica del Anticuerpo Fluorescente
3.
PLoS One ; 16(1): e0245013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33482665

RESUMEN

The macrodomain of nsP3 (nsP3MD) is highly conserved among the alphaviruses and ADP-ribosylhydrolase activity of Chikungunya Virus (CHIKV) nsP3MD is critical for CHIKV viral replication and virulence. No small molecule drugs targeting CHIKV nsP3 have been identified to date. Here we report small fragments that bind to nsP3MD which were discovered by virtually screening a fragment library and X-ray crystallography. These identified fragments share a similar scaffold, 2-pyrimidone-4-carboxylic acid, and are specifically bound to the ADP-ribose binding site of nsP3MD. Among the fragments, 2-oxo-5,6-benzopyrimidine-4-carboxylic acid showed anti-CHIKV activity with an IC50 of 23 µM. Our fragment-based drug discovery approach provides valuable information to further develop a specific and potent nsP3 inhibitor of CHIKV viral replication based on the 2-pyrimidone-4-carboxylic acid scaffold. In silico studies suggest this pyrimidone scaffold could also bind to the macrodomains of other alphaviruses and coronaviruses and thus, have potential pan-antiviral activity.


Asunto(s)
Virus Chikungunya/efectos de los fármacos , Pirimidinonas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Sitios de Unión , Virus Chikungunya/metabolismo , Diseño de Fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...