Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4471, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796480

RESUMEN

Working memory (WM) is the ability to maintain and manipulate information 'in mind'. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment. Here, we demonstrate distinct neuronal activation sequences (NASs) that encode remembered target locations in the virtual environment. This NAS code outperformed the persistent firing code for remembered locations during the virtual reality task, but not during a classical WM task using stationary stimuli and constraining eye movements. Finally, blocking NMDA receptors using low doses of ketamine deteriorated the NAS code and behavioral performance selectively during the WM task. These results reveal the versatility and adaptability of neural codes supporting working memory function in the primate lateral prefrontal cortex.


Asunto(s)
Macaca mulatta , Memoria a Corto Plazo , Neuronas , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Memoria a Corto Plazo/fisiología , Masculino , Neuronas/fisiología , Realidad Virtual , Ketamina/farmacología , Navegación Espacial/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Neurobiol Dis ; 187: 106317, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37802153

RESUMEN

In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.


Asunto(s)
Enfermedades Neuroinflamatorias , Tauopatías , Humanos , Ratones , Ratas , Animales , Anciano , Ratones Transgénicos , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Ratas Transgénicas , Atrofia , Modelos Animales de Enfermedad
4.
J Neurosci Methods ; 397: 109948, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572883

RESUMEN

BACKGROUND: Accurate targeting of brain structures for in-vivo electrophysiological recordings is essential for basic as well as clinical neuroscience research. Although methodologies for precise targeting and recording from the cortical surface are abundant, such protocols are scarce for deep brain structures. NEW METHOD: We have incorporated stable fiducial markers within a custom cranial cap for improved image-guided neuronavigation targeting of subcortical structures in macaque monkeys. Anchor bolt chambers allowed for a minimally invasive entrance into the brain for chronic recordings. A 3D-printed microdrive allowed for semi-chronic applications. RESULTS: We achieved an average Euclidean targeting error of 1.6 mm and a radial error of 1.2 mm over three implantations in two animals. Chronic and semi-chronic implantations allowed for recording of extracellular neuronal activity, with single-neuron activity examples shown from one macaque monkey. COMPARISON WITH EXISTING METHOD(S): Traditional stereotactic methods ignore individual anatomical variability. Our targeting approach allows for a flexible, subject-specific surgical plan with targeting errors lower than what is reported in humans, and equal to or lower than animal models using similar methods. Utilizing an anchor bolt as a chamber reduced the craniotomy size needed for electrode implantation, compared to conventional large access chambers which are prone to infection. Installation of an in-house, 3D-printed, screw-to-mount mechanical microdrive is in contrast to existing semi-chronic methods requiring fabrication, assembly, and installation of complex parts. CONCLUSIONS: Leveraging commercially available tools for implantation, our protocol decreases the risk of infection from open craniotomies, and improves the accuracy of chronic electrode implantations targeting deep brain structures in large animal models.


Asunto(s)
Encéfalo , Neuronavegación , Humanos , Animales , Neuronavegación/métodos , Microelectrodos , Técnicas Estereotáxicas , Craneotomía , Electrodos Implantados
5.
Hippocampus ; 33(5): 573-585, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002559

RESUMEN

Cells selectively activated by a particular view of an environment have been found in the primate hippocampus (HPC). Whether view cells are present in other brain areas, and how view selectivity interacts with other variables such as object features and place remain unclear. Here, we explore these issues by recording the responses of neurons in the HPC and the lateral prefrontal cortex (LPFC) of rhesus macaques performing a task in which they learn new context-object associations while navigating a virtual environment using a joystick. We measured neuronal responses at different locations in a virtual maze where animals freely directed gaze to different regions of the visual scenes. We show that specific views containing task relevant objects selectively activated a proportion of HPC units, and an even higher proportion of LPFC units. Place selectivity was scarce and generally dependent on view. Many view cells were not affected by changing the object color or the context cue, two task relevant features. However, a small proportion of view cells showed selectivity for these two features. Our results show that during navigation in a virtual environment with complex and dynamic visual stimuli, view cells are found in both the HPC and the LPFC. View cells may have developed as a multiarea specialization in diurnal primates to encode the complexities and layouts of the environment through gaze exploration which ultimately enables building cognitive maps of space that guide navigation.


Asunto(s)
Hipocampo , Neuronas , Animales , Macaca mulatta , Neuronas/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Aprendizaje
6.
Cell Rep ; 42(5): 112449, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119136

RESUMEN

The lateral prefrontal cortex (LPFC) of primates is thought to play a role in associative learning. However, it remains unclear how LPFC neuronal ensembles dynamically encode and store memories for arbitrary stimulus-response associations. We recorded the activity of neurons in LPFC of two macaques during an associative learning task using multielectrode arrays. During task trials, the color of a symbolic cue indicated the location of one of two possible targets for a saccade. During a trial block, multiple randomly chosen associations were learned by the subjects. A state-space analysis indicated that LPFC neuronal ensembles rapidly learn new stimulus-response associations mirroring the animals' learning. Multiple associations acquired during training are stored in a neuronal subspace and can be retrieved hours after learning. Finally, knowledge of old associations facilitates learning new, similar associations. These results indicate that neuronal ensembles in the primate LPFC provide a flexible and dynamic substrate for associative learning.


Asunto(s)
Macaca , Neuronas , Animales , Neuronas/fisiología , Primates , Aprendizaje , Corteza Prefrontal/fisiología
7.
Autism ; 27(4): 1053-1067, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36278283

RESUMEN

LAY ABSTRACT: Autism spectrum disorder (ASD) is clinically characterized by social communication difficulties as well as restricted and repetitive patterns of behavior. In addition, children with ASD are more likely to experience anxiety compared with their peers who do not have ASD. Recent studies suggest that atypical amygdala structure, a brain region involved in emotions, may be related to anxiety in children with ASD. However, the amygdala is a complex structure composed of heterogeneous subnuclei, and few studies to date have focused on how amygdala subnuclei relate to in anxiety in this population. The current sample consisted of 95 children with ASD and 139 non-autistic children, who underwent magnetic resonance imaging (MRI) and assessments for anxiety. The amygdala volumes were automatically segmented. Results indicated that children with ASD had elevated anxiety scores relative to peers without ASD. Larger basal volumes predicted greater anxiety in children with ASD, and this association was not seen in non-autistic children. Findings converge with previous literature suggesting ASD children suffer from higher levels of anxiety than non-autistic children, which may have important implications in treatment and interventions. Our results suggest that volumetric estimation of amygdala's subregions in MRI may reveal specific anxiety-related associations in children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Adolescente , Trastorno del Espectro Autista/complicaciones , Ansiedad , Trastornos de Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad/complicaciones , Encéfalo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Imagen por Resonancia Magnética/métodos
8.
BMC Biol ; 20(1): 220, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199136

RESUMEN

BACKGROUND: Feature-based attention prioritizes the processing of the attended feature while strongly suppressing the processing of nearby ones. This creates a non-linearity or "attentional suppressive surround" predicted by the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neurophysiological and psychophysical approaches. RESULTS: Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a motion task. When attention was allocated to a stimulus moving in the neurons' preferred direction, response tuning curves showed its minimum for directions 60-90° away from the preferred direction, an attentional suppressive surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly tuned and inhibitory widely tuned inputs into a neuron, with feature-based attention predominantly increasing the gain of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention produces a similar non-linearity on motion discrimination performance. CONCLUSIONS: Our results link the gain modulation of neuronal inputs and tuning curves examined through the feature-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning model, providing a unified framework for the documented effects of feature-based attention on neuronal responses and behavior.


Asunto(s)
Percepción de Movimiento , Humanos , Percepción de Movimiento/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Lóbulo Temporal/fisiología
9.
J Neurosci ; 42(44): 8328-8342, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36195438

RESUMEN

Primates use perceptual and mnemonic visuospatial representations to perform everyday functions. Neurons in the lateral prefrontal cortex (LPFC) have been shown to encode both of these representations during tasks where eye movements are strictly controlled and visual stimuli are reduced in complexity. This raises the question of whether perceptual and mnemonic representations encoded by LPFC neurons remain robust during naturalistic vision-in the presence of a rich visual scenery and during eye movements. Here we investigate this issue by training macaque monkeys to perform working memory and perception tasks in a visually complex virtual environment that requires navigation using a joystick and allows for free visual exploration of the scene. We recorded the activity of 3950 neurons in the LPFC (areas 8a and 9/46) of two male rhesus macaques using multielectrode arrays, and measured eye movements using video tracking. We found that navigation trajectories to target locations and eye movement behavior differed between the perception and working memory tasks, suggesting that animals used different behavioral strategies. Single neurons were tuned to target location during cue encoding and working memory delay, and neural ensemble activity was predictive of the behavior of the animals. Neural decoding of the target location was stable throughout the working memory delay epoch. However, neural representations of similar target locations differed between the working memory and perception tasks. These findings indicate that during naturalistic vision, LPFC neurons maintain robust and distinct neural codes for mnemonic and perceptual visuospatial representations.SIGNIFICANCE STATEMENT We show that lateral prefrontal cortex neurons encode working memory and perceptual representations during a naturalistic task set in a virtual environment. We show that despite eye movement and complex visual input, neurons maintain robust working memory representations of space, which are distinct from neuronal representations for perception. We further provide novel insight into the use of virtual environments to construct behavioral tasks for electrophysiological experiments.


Asunto(s)
Memoria a Corto Plazo , Corteza Prefrontal , Animales , Masculino , Memoria a Corto Plazo/fisiología , Macaca mulatta , Corteza Prefrontal/fisiología , Neuronas/fisiología , Movimientos Oculares
10.
Neuron ; 110(13): 2155-2169.e4, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35561675

RESUMEN

The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at different spatiotemporal scales. We used a virtual reality task in which animals selected one of the two targets in the arms of the maze, according to a learned context-color rule. Our results show that during associative learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories. On the other hand, layer II/III LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without necessarily triggering fast synaptic plasticity.


Asunto(s)
Hipocampo , Corteza Prefrontal , Animales , Hipocampo/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Primates , Células Piramidales/fisiología
11.
Front Neural Circuits ; 15: 764177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899197

RESUMEN

Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.


Asunto(s)
Memoria a Corto Plazo , Numismática , Animales , Visión Ocular , Vías Visuales , Percepción Visual
12.
Mol Psychiatry ; 26(11): 6688-6703, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33981008

RESUMEN

Ketamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine's action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.


Asunto(s)
Ketamina , Anestésicos Disociativos/farmacología , Animales , Humanos , Ketamina/farmacología , Macaca mulatta , Memoria a Corto Plazo , Corteza Prefrontal
13.
Nat Commun ; 11(1): 2128, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358494

RESUMEN

Attention enhances the neural representations of behaviorally relevant stimuli, typically by a push-pull increase of the neuronal response gain to attended vs. unattended stimuli. This selectively improves perception and consequently behavioral performance. However, to enhance the detectability of stimulus changes, attention might also distort neural representations, compromising accurate stimulus representation. We test this hypothesis by recording neural responses in the visual cortex of rhesus monkeys during a motion direction change detection task. We find that attention indeed amplifies the neural representation of direction changes, beyond a similar effect of adaptation. We further show that humans overestimate such direction changes, providing a perceptual correlate of our neurophysiological observations. Our results demonstrate that attention distorts the neural representations of abrupt sensory changes and consequently perceptual accuracy. This likely represents an evolutionary adaptive mechanism that allows sensory systems to flexibly forgo accurate representation of stimulus features to improve the encoding of stimulus change.


Asunto(s)
Atención/fisiología , Electrofisiología , Percepción Visual/fisiología , Adulto , Animales , Femenino , Humanos , Macaca mulatta , Masculino , Neuronas/citología , Neuronas/metabolismo , Corteza Visual/fisiología , Adulto Joven
14.
Hippocampus ; 30(3): 192-209, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31339193

RESUMEN

Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.


Asunto(s)
Hipocampo/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Movimientos Sacádicos/fisiología , Percepción Visual/fisiología , Potenciales de Acción/fisiología , Animales , Macaca mulatta , Masculino
15.
Nat Neurosci ; 23(1): 103-112, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873285

RESUMEN

The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a foraging task and a context-object associative memory task. During both tasks, single neurons encoded information about spatial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks, particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neurons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Neuronas/fisiología , Navegación Espacial/fisiología , Animales , Macaca mulatta , Masculino , Percepción Espacial/fisiología
16.
Emotion ; 19(2): 234-241, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29888933

RESUMEN

Discrete emotion theories emphasize the modularity of facial expressions, while functionalist theories suggest that a single facial action may have a common meaning across expressions. Smiles involving the Duchenne marker, eye constriction causing crow's feet, are perceived as intensely positive and sincere. To test whether the Duchenne marker is a general index of intensity and sincerity, we contrasted positive and negative expressions with and without the Duchenne marker in a binocular rivalry paradigm. Both smiles and sad expressions involving the Duchenne marker were perceived longer than non-Duchenne expressions, and participants rated all Duchenne expressions as more affectively intense and more sincere than their non-Duchenne counterparts. Correlations between perceptual dominance and ratings suggested that the Duchenne marker increased the dominance of smiles and sad expressions by increasing their perceived affective intensity. The results provide evidence in favor of Darwin's hypothesis that specific facial actions have a general function (conveying affect intensification and sincerity) across expressions. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Expresión Facial , Reconocimiento Facial , Disparidad Visual , Visión Binocular , Adulto , Afecto , Cara , Femenino , Humanos , Masculino , Modelos Biológicos , Adulto Joven
17.
Neuroimage ; 178: 287-294, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29852280

RESUMEN

The close homology of monkeys and humans has increased the prevalence of non-human-primate models in functional MRI studies of brain connectivity. To improve upon the attainable resolution in functional MRI studies, a commensurate increase in the sensitivity of the radiofrequency receiver coil is required to avoid a reduction in the statistical power of the analysis. Most receive coils are comprised of multiple loops distributed equidistantly over a surface to produce spatially independent sensitivity profiles. A larger number of smaller elements will in turn provide a higher signal-to-noise ratio (SNR) over the same field of view. As the loops become physically smaller, noise originating from the sample is reduced relative to noise originating from the coil. In this coil-noise-dominated regime, coil elements can have overlapping sensitivity profiles, yet still possess only mildly correlated noise. In this manuscript, we demonstrate that inductively decoupled, concentric coil arrays can improve temporal SNR when operating in the coil-noise-dominated regime-in contrast to what is expected for the more ubiquitous sample-noise-dominated array. A small, thin, 7-channel flexible coil is developed and operated in conjunction with an existing whole-head monkey coil. The mean and maximum noise correlation between the two arrays was 5% and 23%, respectively. When the flex coil was placed over the sensorimotor cortex, the temporal SNR improved by up to 2.3-fold in the peripheral cortex and up to 1.3-fold at a 2- to 3-cm depth within the brain. When the flex coil was placed over the frontal eye fields, resting-state maps showed substantially elevated sensitivity to correlations in the prefrontal cortex (54%), supplementary eye fields (39%), and anterior cingulate cortex (41%). The concentric-coil topology provided a pragmatic and robust means to significantly improve local temporal SNR and the statistical power of functional connectivity maps.


Asunto(s)
Mapeo Encefálico/instrumentación , Encéfalo/fisiología , Imagen por Resonancia Magnética/instrumentación , Animales , Haplorrinos , Relación Señal-Ruido
18.
J Neurosci Methods ; 304: 103-117, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694848

RESUMEN

BACKGROUND: Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. NEW METHOD: We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. RESULTS: Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. COMPARISON WITH EXISTING METHODS: Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. CONCLUSIONS: Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area.


Asunto(s)
Materiales Biocompatibles , Encéfalo/fisiología , Neurofisiología/instrumentación , Neurofisiología/métodos , Prótesis e Implantes , Animales , Macaca mulatta , Cráneo
19.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568798

RESUMEN

Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures.


Asunto(s)
Atención/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Percepción Espacial/fisiología , Potenciales de Acción , Animales , Electrodos Implantados , Macaca , Masculino , Percepción de Movimiento/fisiología , Procesamiento de Señales Asistido por Computador
20.
Cereb Cortex ; 28(7): 2405-2421, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605513

RESUMEN

Single neurons in primate dorsolateral prefrontal cortex (dLPFC) are known to encode working memory (WM) representations of visual space. Psychophysical studies have shown that the horizontal and vertical meridians of the visual field can bias spatial information maintained in WM. However, most studies and models have tacitly assumed that dLPFC neurons represent mnemonic space homogenously. The anatomical organization of these representations has also eluded clear parametric description. We investigated these issues by recording from neuronal ensembles in macaque dLPFC with microelectrode arrays while subjects performed an oculomotor delayed-response task. We found that spatial WM representations in macaque dLPFC are biased by the vertical and horizontal meridians of the visual field, dividing mnemonic space into quadrants. This bias is reflected in single neuron firing rates, neuronal ensemble representations, the spike count correlation structure, and eye movement patterns. We also found that dLPFC representations of mnemonic space cluster anatomically in a nonretinotopic manner that partially reflects the organization of visual space. These results provide an explanation for known WM biases, and reveal novel principles of WM representation in prefrontal neuronal ensembles and across the cortical surface, as well as the need to reconceptualize models of WM to accommodate the observed representational biases.


Asunto(s)
Potenciales de Acción/fisiología , Sesgo , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Percepción Espacial/fisiología , Animales , Movimientos Oculares , Femenino , Macaca fascicularis , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA