Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Intervalo de año de publicación
2.
Biomedicines ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397859

RESUMEN

Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes. Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein 2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs, CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in different tissues. CMA also regulates physiologic functions in different organs, and is then implicated in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In this minireview, we have summarized the most important findings on the role of CMA in tissue homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.

3.
PLoS One ; 18(11): e0293774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37992028

RESUMEN

Parkinson's disease (PD) is characterized by the progressive dopaminergic neuron degeneration, resulting in striatal dopamine deficiency. Mitochondrial dysfunction and oxidative stress are associated with PD pathogenesis. Physical activity (PA) has been shown to ameliorate neurological impairments and to impede age-related neuronal loss. In addition, skin fibroblasts have been identified as surrogate indicators of pathogenic processes correlating with clinical measures. The PARKEX study aims to compare the effects of two different PA programs, analyzing the impact on mitochondrial function in patients' skin fibroblasts as biomarkers for disease status and metabolic improvement. Early-stage PD patients (n = 24, H&Y stage I to III) will be randomized into three age- and sex-matched groups. Group 1 (n = 8) will undergo basic physical training (BPT) emphasizing strength and resistance. Group 2 (n = 8) will undergo BPT combined with functional exercises (BPTFE), targeting the sensorimotor pathways that are most affected in PD (proprioception-balance-coordination) together with cognitive and motor training (Dual task training). Group 3 (n = 8) will serve as control (sedentary group; Sed). Participants will perform three sessions per week for 12 weeks. Assessment of motor function, quality of life, sleep quality, cognitive aspects and humor will be conducted pre- and post-intervention. Patient skin fibroblasts will be collected before and after the intervention and characterized in terms of metabolic remodeling and mitochondrial bioenergetics. Ethical approval has been given to commence this study. This trial is registered at clinicaltrials.gov (NCT05963425). Trial registration. https://classic.clinicaltrials.gov/ct2/history/NCT05963425.


Asunto(s)
Enfermedad de Parkinson , Calidad de Vida , Humanos , Terapia por Ejercicio/métodos , Proyectos de Investigación , Ejercicio Físico , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Cells ; 12(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36611984

RESUMEN

GBA gene variants were the first genetic risk factor for Parkinson's disease. GBA encodes the lysosomal enzyme glucocerebrosidase (GBA), which is involved in sphingolipid metabolism. GBA exhibits a complex physiological function that includes not only the degradation of its substrate glucosylceramide but also the metabolism of other sphingolipids and additional lipids such as cholesterol, particularly when glucocerebrosidase activity is deficient. In the context of Parkinson's disease associated with GBA, the loss of GBA activity has been associated with the accumulation of α-synuclein species. In recent years, several hypotheses have proposed alternative and complementary pathological mechanisms to explain why lysosomal enzyme mutations lead to α-synuclein accumulation and become important risk factors in Parkinson's disease etiology. Classically, loss of GBA activity has been linked to a dysfunctional autophagy-lysosome system and to a subsequent decrease in autophagy-dependent α-synuclein turnover; however, several other pathological mechanisms underlying GBA-associated parkinsonism have been proposed. This review summarizes and discusses the different hypotheses with a special focus on autophagy-dependent mechanisms, as well as autophagy-independent mechanisms, where the role of other players such as sphingolipids, cholesterol and other GBA-related proteins make important contributions to Parkinson's disease pathogenesis.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Glucosilceramidasa/metabolismo , Hidrolasas , Lisosomas/metabolismo , Autofagia
5.
NPJ Parkinsons Dis ; 8(1): 126, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202848

RESUMEN

Mutations in the GBA gene that encodes the lysosomal enzyme ß-glucocerebrosidase (GCase) are a major genetic risk factor for Parkinson's disease (PD). In this study, we generated a set of differentiated and stable human dopaminergic cell lines that express the two most prevalent GBA mutations as well as GBA knockout cell lines as a in vitro disease modeling system to study the relationship between mutant GBA and the abnormal accumulation of α-synuclein. We performed a deep analysis of the consequences triggered by the presence of mutant GBA protein and the loss of GCase activity in different cellular compartments, focusing primarily on the lysosomal compartment, and analyzed in detail the lysosomal activity, composition, and integrity. The loss of GCase activity generates extensive lysosomal dysfunction, promoting the loss of activity of other lysosomal enzymes, affecting lysosomal membrane stability, promoting intralysosomal pH changes, and favoring the intralysosomal accumulation of sphingolipids and cholesterol. These local events, occurring only at a subcellular level, lead to an impairment of autophagy pathways, particularly chaperone-mediated autophagy, the main α-synuclein degradative pathway. The findings of this study highlighted the role of lysosomal function and lipid metabolism in PD and allowed us to describe a molecular mechanism to understand how mutations in GBA can contribute to an abnormal accumulation of different α-synuclein neurotoxic species in PD pathology.

6.
Aging Cell ; 21(4): e13583, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35263007

RESUMEN

Sarcopenia is one of the main factors contributing to the disability of aged people. Among the possible molecular determinants of sarcopenia, increasing evidences suggest that chronic inflammation contributes to its development. However, a key unresolved question is the nature of the factors that drive inflammation during aging and that participate in the development of sarcopenia. In this regard, mitochondrial dysfunction and alterations in mitophagy induce inflammatory responses in a wide range of cells and tissues. However, whether accumulation of damaged mitochondria (MIT) in muscle could trigger inflammation in the context of aging is still unknown. Here, we demonstrate that BCL2 interacting protein 3 (BNIP3) plays a key role in the control of mitochondrial and lysosomal homeostasis, and mitigates muscle inflammation and atrophy during aging. We show that muscle BNIP3 expression increases during aging in mice and in some humans. BNIP3 deficiency alters mitochondrial function, decreases mitophagic flux and, surprisingly, induces lysosomal dysfunction, leading to an upregulation of Toll-like receptor 9 (TLR9)-dependent inflammation and activation of the NLRP3 (nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain-containing protein 3) inflammasome in muscle cells and mouse muscle. Importantly, downregulation of muscle BNIP3 in aged mice exacerbates inflammation and muscle atrophy, and high BNIP3 expression in aged human subjects associates with a low inflammatory profile, suggesting a protective role for BNIP3 against age-induced muscle inflammation in mice and humans. Taken together, our data allow us to propose a new adaptive mechanism involving the mitophagy protein BNIP3, which links mitochondrial and lysosomal homeostasis with inflammation and is key to maintaining muscle health during aging.


Asunto(s)
Sarcopenia , Envejecimiento , Animales , Homeostasis , Humanos , Inflamación/metabolismo , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/metabolismo
7.
Ageing Res Rev ; 72: 101468, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563704

RESUMEN

Autophagy, an essential cellular process that mediates degradation of proteins and organelles in lysosomes, has been tightly linked to cellular quality control for its role as part of the proteostasis network. The current interest in identifying the cellular and molecular determinants of aging, has highlighted the important contribution of malfunctioning of autophagy with age to the loss of proteostasis that characterizes all old organisms. However, the diversity of cellular functions of the different types of autophagy and the often reciprocal interactions of autophagy with other determinants of aging, is placing autophagy at the center of the aging process. In this work, we summarize evidence for the contribution of autophagy to health- and lifespan and provide examples of the bidirectional interplay between autophagic pathways and several of the so-called hallmarks of aging. This central role of autophagy in aging, and the dependence on autophagy of many geroprotective interventions, has motivated a search for direct modulators of autophagy that could be used to slow aging and extend healthspan. Here, we review some of those ongoing therapeutic efforts and comment on the potential of targeting autophagy in aging.


Asunto(s)
Envejecimiento , Autofagia , Humanos , Longevidad , Lisosomas/metabolismo , Proteostasis
8.
Autophagy ; 17(3): 672-689, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32093570

RESUMEN

The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyzed the impact of the expansion of its polyglutamine (polyQ) tract. HTT is involved in different mitophagy steps, promoting the physical proximity of different protein complexes during the initiation of mitophagy and recruiting mitophagy receptors essential for promoting the interaction between damaged mitochondria and the nascent autophagosome. The presence of the polyQ tract in mutant HTT affects the formation of these protein complexes and determines the negative consequences of mutant HTT on mitophagy, leading to the accumulation of damaged mitochondria and an increase in oxidative stress. These outcomes contribute to general mitochondrial dysfunction and neurodegeneration in Huntington disease.Abbreviations: AMPK: AMP-activated protein kinase; ATG13: autophagy related 13; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; DMEM: Dulbecco's modified eagle medium; EDTA: ethylene-diamine-tetra-acetic acid; EGFP: enhanced green fluorescent protein; EGTA: ethylene glycol bis(2-aminoethyl ether)tetraacetic acid; FUNDC1: FUN14 domain containing 1; HD: Huntington disease; HRP: horseradish peroxidase; HTT: huntingtin; LC3-II: lipidated form of MAP1LC3/LC3; mtDNA: mitochondrial deoxyribonucleic acid; MTDR: MitoTracker Deep Red; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1, autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; OCR: oxygen consumption rate; OPTN: optineurin; OXPHOS: oxidative phosphorylation; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PINK1: PTEN induced putative kinase 1; PLA: proximity ligation assay; PMSF: phenylmethylsulfonyl fluoride; polyQ: polyglutamine; PtdIns3K: phosphatidylinositol 3-kinase; ROS: reactive oxygen species; Rot: rotenone; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TMRM: tetramethylrhodamine methyl ester; UB: ubiquitin; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mitofagia/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Humanos , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo
9.
Actual. psicol. (Impr.) ; 34(129)dic. 2020.
Artículo en Español | LILACS, SaludCR, PsiArg | ID: biblio-1383488

RESUMEN

Resumen. Objetivo. Estudiar las relaciones entre variables de ajuste personal y las conductas disruptivas en un grupo de 136 alumnos y alumnas de primaria de entre 9 y 12 años. Método. Estudio de campo observacional, de metodología no experimental y transversal. Se utilizaron varios cuestionarios para medir la autoestima, la personalidad, el estrés y las competencias emocionales de los y las estudiantes, así como un cuestionario ad hoc elaborado para el registro de las conductas disruptivas. Resultados. Los resultados indican relaciones significativas positivas entre conductas disruptivas y estrés escolar, así como negativas con autoestima, estabilidad, competencia y comprensión emocional. Las diferencias son significativas según el género, manifestándose las conductas inadecuadas en menor medida en el caso de las niñas.


Abstract. Objective. This study analyses the relationships between personal adjustment and disruptive behaviors in a group of 136 primary school students between the ages of 9 and 12. Method. This field observation study used a non-experimental, cross-sectional methodology. Several questionnaires were used to measure students' self-esteem, personality, stress, and emotional competencies. Moreover, an ad hoc questionnaire was created to record disruptive behaviors. Results. The results indicate significant positive relationships between disruptive behaviors and school stress, as well as negative ones with self-esteem, stability, competence, and emotional understanding. The differences are significant according to gender, with inappropriate behaviors manifesting to a lesser extent in the case of girls.


Asunto(s)
Humanos , Masculino , Femenino , Niño , Personalidad , Estrés Fisiológico , Problema de Conducta/psicología , España , Estudiantes
10.
Cells ; 9(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147750

RESUMEN

Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson's disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson's disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.


Asunto(s)
Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Autofagia , Endosomas/metabolismo , Humanos , Neuroglía/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo
11.
Ann Clin Transl Neurol ; 7(8): 1436-1442, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32767480

RESUMEN

FBXO7 is implicated in the ubiquitin-proteasome system and parkin-mediated mitophagy. FBXO7defects cause a levodopa-responsive parkinsonian-pyramidal syndrome(PPS). METHODS: We investigated the disease molecular bases in a child with PPS and brain iron accumulation. RESULTS: A novel homozygous c.368C>G (p.S123*) FBXO7 mutation was identified in a child with spastic paraplegia, epilepsy, cerebellar degeneration, levodopa nonresponsive parkinsonism, and brain iron deposition. Patient's fibroblasts assays demonstrated an absence of FBXO7 RNA expression leading to impaired proteasome degradation and accumulation of poly-ubiquitinated proteins. CONCLUSION: This novel FBXO7 phenotype associated with impaired proteasome activity overlaps with neurodegeneration with brain iron accumulation disorders.


Asunto(s)
Proteínas F-Box/genética , Trastornos del Metabolismo del Hierro , Distrofias Neuroaxonales , Trastornos Parkinsonianos , Complejo de la Endopetidasa Proteasomal/metabolismo , Adulto , Consanguinidad , Epilepsia/enzimología , Epilepsia/genética , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Humanos , Trastornos del Metabolismo del Hierro/enzimología , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/patología , Trastornos del Metabolismo del Hierro/fisiopatología , Distrofias Neuroaxonales/enzimología , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/patología , Distrofias Neuroaxonales/fisiopatología , Paraplejía/enzimología , Paraplejía/genética , Paraplejía/patología , Paraplejía/fisiopatología , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Degeneraciones Espinocerebelosas/enzimología , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Degeneraciones Espinocerebelosas/fisiopatología , Síndrome , Adulto Joven
12.
Mol Neurodegener ; 15(1): 35, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517777

RESUMEN

BACKGROUND: The apolipoprotein E (APOE) gene exists in three isoforms in humans: APOE2, APOE3 and APOE4. APOE4 causes structural and functional alterations in normal brains, and is the strongest genetic risk factor of the sporadic form of Alzheimer's disease (LOAD). Research on APOE4 has mainly focused on the neuronal damage caused by defective cholesterol transport and exacerbated amyloid-ß and Tau pathology. The impact of APOE4 on non-neuronal cell functions has been overlooked. Astrocytes, the main producers of ApoE in the healthy brain, are building blocks of neural circuits, and Ca2+ signaling is the basis of their excitability. Because APOE4 modifies membrane-lipid composition, and lipids regulate Ca2+ channels, we determined whether APOE4 dysregulates Ca2+signaling in astrocytes. METHODS: Ca2+ signals were recorded in astrocytes in hippocampal slices from APOE3 and APOE4 gene targeted replacement male and female mice using Ca2+ imaging. Mechanistic analyses were performed in immortalized astrocytes. Ca2+ fluxes were examined with pharmacological tools and Ca2+ probes. APOE3 and APOE4 expression was manipulated with GFP-APOE vectors and APOE siRNA. Lipidomics of lysosomal and whole-membranes were also performed. RESULTS: We found potentiation of ATP-elicited Ca2+responses in APOE4 versus APOE3 astrocytes in male, but not female, mice. The immortalized astrocytes modeled the male response, and showed that Ca2+ hyperactivity associated with APOE4 is caused by dysregulation of Ca2+ handling in lysosomal-enriched acidic stores, and is reversed by the expression of APOE3, but not of APOE4, pointing to loss of function due to APOE4 malfunction. Moreover, immortalized APOE4 astrocytes are refractory to control of Ca2+ fluxes by extracellular lipids, and present distinct lipid composition in lysosomal and plasma membranes. CONCLUSIONS: Immortalized APOE4 versus APOE3 astrocytes present: increased Ca2+ excitability due to lysosome dysregulation, altered membrane lipidomes and intracellular cholesterol distribution, and impaired modulation of Ca2+ responses upon changes in extracellular lipids. Ca2+ hyperactivity associated with APOE4 is found in astrocytes from male, but not female, targeted replacement mice. The study suggests that, independently of Aß and Tau pathologies, altered astrocyte excitability might contribute to neural-circuit hyperactivity depending on APOE allele, sex and lipids, and supports lysosome-targeted therapies to rescue APOE4 phenotypes in LOAD.


Asunto(s)
Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrocitos/metabolismo , Calcio/metabolismo , Lisosomas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/metabolismo , Colesterol/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Neuronas/metabolismo
13.
Cells ; 9(2)2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098205

RESUMEN

Autophagy induction is an attractive therapeutic approach to ameliorate aggregate accumulation in many neurodegenerative diseases. In Huntington's disease (HD) in vivo models, a number of genetic and pharmacological mechanisms aimed to induce autophagy have been successfully tested [1], demonstrating the role of autophagy in promoting the elimination of mutant huntingtin (mHTT) aggregates and its neuroprotective effect. In their recent report in Cells, Vernizzi and colleagues [2] presented a totally new mechanism to induce autophagy, promote the elimination of mHTT aggregates, and ultimately achieve neuroprotection. This novel therapy is based on the overexpression of glutamine synthetase 1 (GS1), an enzyme that catalyzes the synthesis of L-glutamine from L-glutamate as part of the glutamate glutamine cycle (GGC), a physiological process between glia and neurons that controls glutamate homeostasis [3].[...].


Asunto(s)
Autofagia , Enfermedad de Huntington , Animales , Drosophila , Glutamato-Amoníaco Ligasa , Ligasas , Lisosomas , Neuronas
14.
Nat Commun ; 10(1): 973, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846695

RESUMEN

In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.


Asunto(s)
Encéfalo/metabolismo , Melaninas/biosíntesis , Monofenol Monooxigenasa/metabolismo , Enfermedad de Parkinson/metabolismo , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Humanos , Cuerpos de Lewy/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monofenol Monooxigenasa/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/deficiencia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Hum Mol Genet ; 26(14): 2603-2615, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28520872

RESUMEN

Mutations in the GBA1 gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) are important risk factors for Parkinson's disease (PD). In vitro, altered GBA1 activity promotes alpha-synuclein accumulation whereas elevated levels of alpha-synuclein compromise GBA1 function, thus supporting a pathogenic mechanism in PD. However, the mechanisms by which GBA1 deficiency is linked to increased risk of PD remain elusive, partially because of lack of aged models of GBA1 deficiency. As knocking-out GBA1 in the entire brain induces massive neurodegeneration and early death, we generated a mouse model of GBA1 deficiency amenable to investigate the long-term consequences of compromised GBA1 function in dopaminergic neurons. DAT-Cre and GBA1-floxed mice were bred to obtain selective homozygous disruption of GBA1 in midbrain dopamine neurons (DAT-GBA1-KO). Mice were followed for motor function, neuronal survival, alpha-synuclein phosphorylation and glial activation. Susceptibility to nigral viral vector-mediated overexpression of mutated (A53T) alpha-synuclein was assessed. Despite loss of GBA1 and substrate accumulation, DAT-GBA1-KO mice displayed normal motor performances and preserved dopaminergic neurons despite robust microglial activation in the substantia nigra, without accumulation of endogenous alpha-synuclein with respect to wild-type mice. Lysosomal function was only marginally affected. Screening of micro-RNAs linked to the regulation of GBA1, alpha-synuclein or neuroinflammation did not reveal significant alterations. Viral-mediated overexpression of A53T-alpha-synuclein yielded similar neurodegeneration in DAT-GBA1-KO mice and wild-type mice. These results indicate that loss of GBA1 function in mouse dopaminergic neurons is not critical for alpha-synuclein accumulation or neurodegeneration and suggest the involvement of GBA1 deficiency in other cell types as a potential mechanism.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Animales , Encéfalo/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Vectores Genéticos , Mesencéfalo/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Modelos Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
16.
Front Mol Neurosci ; 10: 64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337125

RESUMEN

Neuronal homeostasis depends on the proper functioning of different quality control systems. All intracellular components are subjected to continuous turnover through the coordinated synthesis, degradation and recycling of their constituent elements. Autophagy is the catabolic mechanism by which intracellular cytosolic components, including proteins, organelles, aggregates and any other intracellular materials, are delivered to lysosomes for degradation. Among the different types of selective autophagy described to date, the process of mitophagy involves the selective autophagic degradation of mitochondria. In this way, mitophagy is responsible for basal mitochondrial turnover, but can also be induced under certain physiological or pathogenic conditions to eliminate unwanted or damaged mitochondria. Dysfunctional cellular proteolytic systems have been linked extensively to neurodegenerative diseases (ND) like Alzheimer's disease (AD), Parkinson's disease (PD), or Huntington's disease (HD), with autophagic failure being one of the main factors contributing to neuronal cell death in these diseases. Neurons are particularly vulnerable to autophagic impairment as well as to mitochondrial dysfunction, due mostly to their particular high energy dependence and to their post-mitotic nature. The accurate and proper degradation of dysfunctional mitochondria by mitophagy is essential for maintaining control over mitochondrial quality and quantity in neurons. In this report, I will review the role of mitophagy in neuronal homeostasis and the consequences of its dysfunction in ND.

17.
Methods Mol Biol ; 1556: 255-280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28247355

RESUMEN

Autophagy is critical not only for the cell's adaptive response to starvation but also for cellular homeostasis, by acting as quality-control machinery for cytoplasmic components. This basal autophagic activity is particularly needed in postmitotic cells for survival maintenance. Recently, basal autophagic activity was reported in skeletal muscle stem cells (satellite cells) in their dormant quiescent state. Satellite cells are responsible for growth as well as for regeneration of muscle in response to stresses such as injury or disease. In the absence of stress, quiescence is the stem cell state of these cells throughout life, although which mechanisms maintain long-life quiescence remains largely unknown. Our recent findings showed that autophagy is necessary for quiescence maintenance in satellite cells and for retention of their regenerative functions. Importantly, damaged organelles and proteins accumulated in these cells with aging and this was connected to age-associated defective autophagy. Refueling of autophagy through genetic and pharmacological strategies restored aged satellite cell functions, and these finding have biomedical implications. In this chapter, we describe different experimental strategies to evaluate autophagic activity in satellite cells in resting muscle of mice. They should facilitate our competence to investigate stem cell functions both during tissue homeostasis as in pathological conditions.


Asunto(s)
Autofagia , Bioensayo/métodos , Músculo Esquelético/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Separación Celular/métodos , Senescencia Celular , Inhibidores Enzimáticos/farmacología , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Perfilación de la Expresión Génica , Genes Reporteros , Macrólidos/farmacología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Fase de Descanso del Ciclo Celular/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/efectos de los fármacos , Células Madre/ultraestructura , Transcriptoma
18.
Methods Mol Biol ; 1460: 223-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27492176

RESUMEN

Mitochondria generate most of the cell's supply of ATP as a source of energy. They are also implicated in the control of cell's growth and death. Because of these critical functions, mitochondrial fitness is key for cellular homeostasis. Often, however, mitochondria become defective following damage or stress. To prevent accumulation of damaged mitochondria, the cells clear them through mitophagy, which is defined as the selective degradation of mitochondria by autophagy (the process for degradation of long-lived proteins and damaged organelles in lysosomes). Recently, constitutive mitophagic activity has been reported in quiescent muscle stem cells (satellite cells), which sustain regeneration of skeletal muscle. In response to muscle damage, these cells activate, expand, and differentiate to repair damaged myofibers. Mitophagy was shown to be required for maintenance of satellite cells in their healthy quiescent state. Conversely, damaged mitochondria accumulated in satellite cells with aging and this was attributed to defective mitophagy. This caused increased levels of reactive oxygen species (ROS) and loss of muscle stem cell regenerative capacity at old age. In this chapter, we describe different experimental strategies to evaluate mitochondria status and mitophagy in muscle stem cells from mice. They should improve our ability to study muscle stem homeostasis in adult life, and their loss of function in aging and disease.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Regeneración , Células Madre/citología , Células Madre/metabolismo , Autofagia , Biomarcadores , Separación Celular , Inmunofenotipificación , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Fase de Descanso del Ciclo Celular
19.
Oncotarget ; 7(11): 12286-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26934325

RESUMEN

Mature skeletal muscle is a stable tissue imposing low homeostatic demand on its stem cells, which remain in a quiescent state in their niche over time. We have shown that these long-lived resting stem cells attenuate proteotoxicity and avoid senescence through basal autophagy. This protective "clean-up" system is lost during aging, resulting in stem cell regenerative decline. Thus, autophagy is required for muscle stem cell homeostasis maintenance.


Asunto(s)
Músculo Esquelético/citología , Células Madre/citología , Animales , Autofagia/fisiología , Senescencia Celular/fisiología , Humanos
20.
Autophagy ; 12(3): 612-3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26890313

RESUMEN

Regeneration of skeletal muscle relies on its resident stem cells, also known as satellite cells, which are normally quiescent. With aging, satellite cell quiescence is lost concomitant with a muscle regenerative decline. Here we demonstrate that autophagy sustains quiescence over time and that its failure with age drives senescence, which accounts for stem cell loss of function. Pharmacological and genetic reestablishment of autophagy restores homeostasis and regenerative functions in geriatric satellite cells, which has relevance for the elderly population.


Asunto(s)
Envejecimiento/fisiología , Autofagia , Músculo Esquelético/citología , Células Madre/citología , Animales , Ratones , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA