Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(4): 101757, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202654

RESUMEN

The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.


Asunto(s)
Empalme Alternativo , Leucina-ARNt Ligasa , Humanos , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
J Biol Chem ; 295(14): 4563-4576, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32102848

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited. Using bioinformatics analyses, we identified two distinct leucyl-tRNA synthetase (LeuRS) genes within all genomes of the archaeal family Sulfolobaceae. Remarkably, one copy, designated LeuRS-I, had key amino acid substitutions within its editing domain that would be expected to disrupt hydrolytic editing of mischarged tRNALeu and to result in variation within the proteome of these extremophiles. We found that another copy, LeuRS-F, contains canonical active sites for aminoacylation and editing. Biochemical and genetic analyses of the paralogs within Sulfolobus islandicus supported the hypothesis that LeuRS-F, but not LeuRS-I, functions as an essential tRNA synthetase that accurately charges leucine to tRNALeu for protein translation. Although LeuRS-I was not essential, its expression clearly supported optimal S. islandicus growth. We conclude that LeuRS-I may have evolved to confer a selective advantage under the extreme and fluctuating environmental conditions characteristic of the volcanic hot springs in which these archaeal extremophiles reside.


Asunto(s)
Proteínas Arqueales/metabolismo , Leucina-ARNt Ligasa/metabolismo , Sulfolobus/enzimología , Secuencia de Aminoácidos , Aminoacilación , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Dominio Catalítico , Extremófilos/metabolismo , Edición Génica , Concentración de Iones de Hidrógeno , Leucina/metabolismo , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/clasificación , Leucina-ARNt Ligasa/genética , Mutagénesis Sitio-Dirigida , Filogenia , Biosíntesis de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Sulfolobus/crecimiento & desarrollo , Temperatura
3.
J Clin Invest ; 129(5): 2088-2093, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985292

RESUMEN

Aside from its catalytic function in protein synthesis, leucyl-tRNA synthetase (LRS) has a nontranslational function in regulating cell growth via the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway by sensing amino acid availability. mTOR also regulates skeletal myogenesis, but the signaling mechanism is distinct from that in cell growth regulation. A role of LRS in myogenesis has not been reported. Here we report that LRS negatively regulated myoblast differentiation in vitro. This function of LRS was independent of its regulation of protein synthesis, and it required leucine-binding but not tRNA charging activity of LRS. Local knock down of LRS accelerated muscle regeneration in a mouse injury model, and so did the knock down of Rag or Raptor. Further in vitro studies established a Rag-mTORC1 pathway, which inhibits the IRS1-PI3K-Akt pathway, to be the mediator of the nontranslational function of LRS in myogenesis. BC-LI-0186, an inhibitor reported to disrupt LRS-Rag interaction, promoted robust muscle regeneration with enhanced functional recovery, and this effect was abolished by cotreatment with an Akt inhibitor. Taken together, our findings revealed what we believe is a novel function for LRS in controlling the homeostasis of myogenesis, and suggested a potential therapeutic strategy to target a noncanonical function of a housekeeping protein.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucina-ARNt Ligasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/fisiología , Biosíntesis de Proteínas , Regeneración , Animales , Catálisis , Dominio Catalítico , Diferenciación Celular , Femenino , Homeostasis , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente , Desarrollo de Músculos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN de Transferencia/metabolismo , Resultado del Tratamiento
4.
Hum Genet ; 137(4): 293-303, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29691655

RESUMEN

Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.


Asunto(s)
Atrofia/genética , Microcefalia/genética , Convulsiones/genética , Valina-ARNt Ligasa/genética , Alelos , Aminoacil-ARNt Sintetasas/genética , Atrofia/fisiopatología , Preescolar , Regulación Enzimológica de la Expresión Génica , Humanos , Lactante , Mutación con Pérdida de Función/genética , Masculino , Microcefalia/fisiopatología , Linaje , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Convulsiones/fisiopatología , Aminoacilación de ARN de Transferencia/genética , Secuenciación del Exoma
5.
Nat Commun ; 8(1): 732, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963468

RESUMEN

Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.


Asunto(s)
Leucina-ARNt Ligasa/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/enzimología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Leucina-ARNt Ligasa/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Unión al GTP Monoméricas/genética , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
6.
Methods ; 113: 120-126, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27887986

RESUMEN

Aminoacyl-tRNA synthetases (AARSs) comprise an enzyme family that generates and maintains pools of aminoacylated tRNAs, which serve as essential substrates for protein synthesis. Many protein synthesis factors, including tRNA and AARSs also have non-canonical functions. Particularly in mammalian cells, alternate functions of AARSs have been associated with re-distribution in the cell to sites that are removed from translation. Sub-fractionation methods for E. coli were designed and optimized to carefully investigate re-localization of bacterial AARSs and tRNA that might aid in conferring alternate activities. Cell fractionation included isolation of the cytoplasm, periplasm, membrane, outer membrane vesicles, and extracellular media. Specific endogenous proteins and RNAs were probed respectively within each fraction via Western blots using antibodies and by Northern blots with primers to unique regions of the nucleic acid.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Fraccionamiento Celular/métodos , Membrana Celular/enzimología , Citoplasma/enzimología , Periplasma/enzimología , Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Northern Blotting/métodos , Western Blotting/métodos , Compartimento Celular , Membrana Celular/química , Citoplasma/química , Escherichia coli/enzimología , Escherichia coli/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/enzimología , Expresión Génica , Periplasma/química , Transporte de Proteínas , Sondas ARN/síntesis química , Sondas ARN/química , ARN de Transferencia/genética , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo
7.
Wiley Interdiscip Rev RNA ; 5(4): 461-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24706556

RESUMEN

The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Humanos , Terapia Molecular Dirigida
8.
Top Curr Chem ; 344: 167-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23536244

RESUMEN

Aminoacyl-tRNA synthetases (AARSs) are a group of essential and ubiquitous "house-keeping" enzymes responsible for charging corresponding amino acids to their cognate transfer RNAs (tRNAs) and providing the correct substrates for high-fidelity protein synthesis. During the last three decades, wide-ranging biochemical and genetic studies have revealed non-catalytic regulatory functions of multiple AARSs in biological processes including gene transcription, mRNA translation, and mitochondrial RNA splicing, and in diverse species from bacteria through yeasts to vertebrates. Remarkably, ongoing exploration of non-canonical functions of AARSs has shown that they contribute importantly to control of inflammation, angiogenesis, immune response, and tumorigenesis, among other critical physiopathological processes. In this chapter we consider the non-canonical functions of AARSs in regulating gene expression by mechanisms not directly related to their enzymatic activities, namely, at the levels of mRNA production, processing, and translation. The scope of AARS-mediated gene regulation ranges from negative autoregulation of single AARS genes to gene-selective control, and ultimately to global gene regulation. Clearly, AARSs have evolved these auxiliary regulatory functions that optimize the survival and well-being of the organism, possibly with more complex regulatory mechanisms associated with more complex organisms. In the first section on transcriptional control, we introduce the roles of autoregulation by Escherichia coli AlaRS, transcriptional activation by human LysRS, and transcriptional inhibition by vertebrate SerRS. In the second section on translational control, we recapitulate the roles of GluProRS in translation repression at the initiation step, auto-inhibition of E. coli thrS mRNA translation by ThrRS, and global translational arrest by phosphorylated human MetRS. Finally, in the third section, we describe the RNA splicing activities of mitochondrial TyrRS and LeuRS in Neurospora and yeasts, respectively.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Regulación de la Expresión Génica , Animales , Humanos , Biosíntesis de Proteínas , Empalme del ARN , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 110(10): 3817-22, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431144

RESUMEN

Mycoplasma leucyl-tRNA synthetases (LeuRSs) have been identified in which the connective polypeptide 1 (CP1) amino acid editing domain that clears mischarged tRNAs are missing (Mycoplasma mobile) or highly degenerate (Mycoplasma synoviae). Thus, these enzymes rely on a clearance pathway called pretransfer editing, which hydrolyzes misactivated aminoacyl-adenylate intermediate via a nebulous mechanism that has been controversial for decades. Even as the sole fidelity pathway for clearing amino acid selection errors in the pathogenic M. mobile, pretransfer editing is not robust enough to completely block mischarging of tRNA(Leu), resulting in codon ambiguity and statistical proteins. A high-resolution X-ray crystal structure shows that M. mobile LeuRS structurally overlaps with other LeuRS cores. However, when CP1 domains from different aminoacyl-tRNA synthetases and origins were fused to this common LeuRS core, surprisingly, pretransfer editing was enhanced. It is hypothesized that the CP1 domain evolved as a molecular rheostat to balance multiple functions. These include distal control of specificity and enzyme activity in the ancient canonical core, as well as providing a separate hydrolytic active site for clearing mischarged tRNA.


Asunto(s)
Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , Mycoplasma/genética , Mycoplasma/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Codón/genética , Codón/metabolismo , Cristalografía por Rayos X , Leucina-ARNt Ligasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mycoplasma/patogenicidad , Mycoplasma synoviae/enzimología , Mycoplasma synoviae/genética , Conformación Proteica , Estructura Terciaria de Proteína , Edición de ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
10.
J Am Chem Soc ; 135(16): 6047-55, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23276298

RESUMEN

The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.


Asunto(s)
Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Algoritmos , Aminoacil-ARNt Sintetasas/química , Catálisis , Clonación Molecular , Simulación por Computador , Colorantes Fluorescentes , Histidina/química , Histidina/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Mutagénesis , Mutación/genética , Nucleósidos/química , Espectrometría de Fluorescencia , Thermus thermophilus/enzimología , Thermus thermophilus/genética
11.
Nat Struct Mol Biol ; 19(7): 677-84, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22683997

RESUMEN

Leucyl-tRNA synthetase (LeuRS) produces error-free leucyl-tRNA(Leu) by coordinating translocation of the 3' end of (mis-)charged tRNAs from its synthetic site to a separate proofreading site for editing. Here we report cocrystal structures of the Escherichia coli LeuRS-tRNA(Leu) complex in the aminoacylation or editing conformations, showing that translocation involves correlated rotations of four flexibly linked LeuRS domains. This pivots the tRNA to guide its charged 3' end from the closed aminoacylation state to the editing site. The editing domain unexpectedly stabilizes the tRNA during aminoacylation, and a large rotation of the leucine-specific domain positions the conserved KMSKS loop to bind the 3' end of the tRNA, promoting catalysis. Our results give new insight into the structural dynamics of a molecular machine that is essential for accurate protein synthesis.


Asunto(s)
Escherichia coli/enzimología , Leucina-ARNt Ligasa/metabolismo , Acilación , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Leucina-ARNt Ligasa/química , Modelos Moleculares , Conformación Proteica , Edición de ARN
12.
J Biol Chem ; 287(18): 14772-81, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22383526

RESUMEN

The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.


Asunto(s)
Aminoacil-ARNt Sintetasas/biosíntesis , Proteínas Mitocondriales/biosíntesis , Edición de ARN/fisiología , Empalme del ARN/fisiología , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Aminoacil-ARNt Sintetasas/genética , Proteínas Mitocondriales/genética , Estructura Terciaria de Proteína , ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN Mitocondrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 287(14): 11285-9, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334703

RESUMEN

Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación , Escherichia coli/enzimología , Escherichia coli/genética , Evolución Molecular , Hidrólisis , Cinética , Mycoplasma/enzimología , Mycoplasma/genética , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato
14.
J Am Chem Soc ; 133(46): 18510-3, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22017352

RESUMEN

Many aminoacyl-tRNA synthetases prevent mistranslation by relying upon proofreading activities at multiple stages of the aminoacylation reaction. In leucyl-tRNA synthetase (LeuRS), editing activities that precede or are subsequent to tRNA charging have been identified. Although both are operational, either the pre- or post-transfer editing activity can predominate. Yeast cytoplasmic LeuRS (ycLeuRS) misactivates structurally similar noncognate amino acids including isoleucine and methionine. We show that ycLeuRS has a robust post-transfer editing activity that efficiently clears tRNA(Leu) mischarged with isoleucine. In comparison, the enzyme's post-transfer hydrolytic activity against tRNA(Leu) mischarged with methionine is weak. Rather, methionyl-adenylate is cleared robustly via an enzyme-mediated pre-transfer editing activity. We hypothesize that, similar to E. coli LeuRS, ycLeuRS has coexisting functional pre- and post-transfer editing activities. In the case of ycLeuRS, a shift between the two editing pathways is triggered by the identity of the noncognate amino acid.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia de Leucina , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Escherichia coli/enzimología , Levaduras/enzimología
15.
FEBS Lett ; 585(19): 2986-91, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21856301

RESUMEN

The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.


Asunto(s)
Compuestos de Boro/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Farmacorresistencia Fúngica/genética , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Mutación , Caperuzas de ARN/química , Edición de ARN , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacología , Compuestos de Boro/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Análisis Mutacional de ADN , Leucina-ARNt Ligasa/antagonistas & inhibidores , Leucina-ARNt Ligasa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Electricidad Estática
16.
Proc Natl Acad Sci U S A ; 108(23): 9378-83, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606343

RESUMEN

Mycoplasma parasites escape host immune responses via mechanisms that depend on remarkable phenotypic plasticity. Identification of these mechanisms is of great current interest. The aminoacyl-tRNA synthetases (AARSs) attach amino acids to their cognate tRNAs, but occasionally make errors that substitute closely similar amino acids. AARS editing pathways clear errors to avoid mistranslation during protein synthesis. We show here that AARSs in Mycoplasma parasites have point mutations and deletions in their respective editing domains. The deleterious effect on editing was confirmed with a specific example studied in vitro. In vivo mistranslation was determined by mass spectrometric analysis of proteins produced in the parasite. These mistranslations are uniform cases where the predicted closely similar amino acid replaced the correct one. Thus, natural AARS editing-domain mutations in Mycoplasma parasites cause mistranslation. We raise the possibility that these mutations evolved as a mechanism for antigen diversity to escape host defense systems.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Mutación , Mycoplasma/genética , Biosíntesis de Proteínas/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Sitios de Unión/genética , Humanos , Cinética , Datos de Secuencia Molecular , Mycoplasma/clasificación , Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Filogenia , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrometría de Masas en Tándem
17.
FEBS Lett ; 584(2): 455-9, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19941860

RESUMEN

The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Edición de ARN , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia
18.
FEBS Lett ; 583(21): 3443-7, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19796639

RESUMEN

Aminoacyl-tRNA synthetases often rely on a proofreading mechanism to clear mischarging errors before they can be incorporated into newly synthesized proteins. Leucyl-tRNA synthetase (LeuRS) houses a hydrolytic editing pocket in a domain that is distinct from its aminoacylation domain. Mischarged amino acids are transiently translocated approximately 30A between active sites for editing by an unknown tRNA-dependent mechanism. A glycine within a flexible beta-strand that links the aminoacylation and editing domains of LeuRS was determined to be important to tRNA translocation. The translocation-defective mutation also demonstrated that the editing site screens both correctly and incorrectly charged tRNAs prior to product release.


Asunto(s)
Glicina , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Dominio Catalítico , Escherichia coli/enzimología , Leucina-ARNt Ligasa/genética , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína
19.
Biochemistry ; 48(38): 8958-64, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19702327

RESUMEN

Leucyl-tRNA synthetase (LeuRS) has been identified as a target for a novel class of boron-containing small molecules that bind to its editing active site. When the 3' end of tRNA(Leu) binds to the editing active site, the boron cross-links to the cis-diols of its terminal ribose. The cross-linked RNA-protein complex blocks the overall aminoacylation activity of the enzyme. Similar to those of other LeuRSs, the human cytoplasmic enzyme (hscLeuRS) editing active site resides in a discrete domain called the connective polypeptide 1 domain (CP1), where mischarged tRNA binds for hydrolysis of the noncognate amino acid. The editing site of hscLeuRS includes a highly conserved threonine discriminator and universally conserved aspartic acid that were mutationally characterized. Substitution of the threonine residue to alanine uncoupled specificity as in other LeuRSs. However, the introduction of bulky residues into the amino acid binding pocket failed to block deacylation of tRNA, indicating that the architecture of the amino acid binding pocket is different compared to that of other characterized LeuRSs. In addition, mutation of the universally conserved aspartic acid abolished tRNA(Leu) deacylation. Surprisingly though, this editing-defective hscLeuRS maintained fidelity. It is possible that an alternate editing mechanism may have been activated upon failure of the post-transfer editing active site.


Asunto(s)
Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/metabolismo , Edición de ARN , ARN de Transferencia de Leucina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico/genética , Bovinos , Secuencia Conservada , Cartilla de ADN/genética , Humanos , Técnicas In Vitro , Leucina-ARNt Ligasa/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
J Biol Chem ; 284(39): 26243-50, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19622748

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis. The minimized bI4 intron was active in RNA splicing and contrasts with previous proposals that the canonical core of the bI4 intron is deficient for catalysis. The activity of the minimized bI4 intron was enhanced in vitro by the presence of the bI4 maturase or LeuRS.


Asunto(s)
Endorribonucleasas/genética , Intrones/genética , Leucina-ARNt Ligasa/metabolismo , Nucleotidiltransferasas/genética , Empalme del ARN/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Electroforesis en Gel de Poliacrilamida , Endorribonucleasas/metabolismo , Guanosina/farmacología , Cinética , Leucina-ARNt Ligasa/genética , Magnesio/farmacología , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Nucleotidiltransferasas/metabolismo , Unión Proteica , Empalme del ARN/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA